wishofAI
码龄4年
关注
提问 私信
  • 博客:6,858
    6,858
    总访问量
  • 13
    原创
  • 暂无
    排名
  • 17
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:山东省
  • 加入CSDN时间: 2021-06-15
博客简介:

wishofAI的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    1
    当前总分
    68
    当月
    0
个人成就
  • 获得16次点赞
  • 内容获得5次评论
  • 获得48次收藏
  • 代码片获得113次分享
创作历程
  • 2篇
    2024年
  • 11篇
    2023年
成就勋章
TA的专栏
  • 智能推荐
    2篇
  • Linux系统
    1篇
  • 机器学习
    10篇
兴趣领域 设置
  • Python
    pythonconda
  • 大数据
    大数据
  • 人工智能
    数据挖掘计算机视觉机器学习人工智能自然语言处理
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

centos 8下载安装教程

【时间与日期】-->【地区】-->【亚洲】-->【城市】-->【上海】-->【网络时间】-->【打开】(有个技巧:点击地图华东地区,系统会自动完成以上操作)【操作系统】--->【Linux】--->【版本】-->【CentOS 8 64位】---->【下一步】【新CD/DVD(IDE)】--->【连接】--->【使用ISO映像文件】--->【关闭】【安装目的地(D)】-->【存储配置】-->【自动】-->【完成】【网络与主机名】-->【以太网】-->【打开】-->【完成】【典型】---->【下一步】
原创
发布博客 2024.04.15 ·
3775 阅读 ·
8 点赞 ·
2 评论 ·
26 收藏

深度学习模型的常识解释

以该模型分为lora_single_gpu,qlora_single_gpu,lora_multi_gpu,full_multi_gpu,merge_lora,inference,extras七个文件,每个文件对应一个功能集合。将LoRA模型权重合并到预训练模型使用AutoGPTQ量化模型。
原创
发布博客 2024.04.11 ·
565 阅读 ·
4 点赞 ·
1 评论 ·
6 收藏

基于不同用户对商品打分的当前用户可能喜欢的商品的推荐算法

【代码】基于不同用户对商品打分的当前用户可能喜欢的商品的推荐算法。
原创
发布博客 2023.06.27 ·
116 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

基于Bert的相关书名检索推荐算法

【代码】基于Bert的相关书名检索推荐算法。
原创
发布博客 2023.06.27 ·
186 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

图卷积神经网络(GCN)的节点分类模型

图卷积神经网络的节点分类模型代码
原创
发布博客 2023.06.24 ·
922 阅读 ·
1 点赞 ·
1 评论 ·
12 收藏

多层感知机算法python代码(面向对象编程)

epochs=eval(input("请输入要迭代的次数:"))# 画出数据集的散点图。
原创
发布博客 2023.05.19 ·
314 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

神经网络笔记

原创
发布博客 2023.04.12 ·
45 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

逻辑回归笔记

原创
发布博客 2023.04.12 ·
51 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

BP算法推导

原创
发布博客 2023.04.12 ·
63 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

蒙特卡罗算法示例(面向对象编程)

x = random.random() # 利用random()产生随机数或者是伪随机数。if y
原创
发布博客 2023.04.01 ·
127 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

单层感知器笔记+代码示例

h = w[0] * x[0] + w[1] * x[1] + w[2]*x[2]#公式y=w*x再求和。h = w[0] * x[0] + w[1] * x[1] + w[2]*x[2]#公式y=w*x再求和。H = int(h >= 0) #激活函数为阶跃函数(当x>=0时,y=1,否则为0)H = int(h >= 0) #激活函数为阶跃函数(当x>=0时,y=1,否则为0)for x, yy in zip(x, Y):#取出数据及标签值。#数据及label值。#数据及label值。
原创
发布博客 2023.03.29 ·
433 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

线性回归原理

原创
发布博客 2023.03.13 ·
85 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

数据挖掘——线性代数基础

原创
发布博客 2023.03.06 ·
156 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏