原文:
annas-archive.org/md5/5f729908f617ac4c3bf4b93d739754a8译者:飞龙
第七章:多线程和同步
嵌入式平台涵盖了广阔的计算能力领域。有些微控制器只有几千字节的内存;有些功能强大的系统级芯片(SoCs)有几千兆字节的内存;还有一些多核 CPU 能够同时运行许多应用程序。
随着嵌入式开发人员可用的计算资源增加,以及他们可以构建的更复杂的应用程序,多线程支持变得非常重要。开发人员需要知道如何并行化他们的应用程序,以有效地利用所有 CPU 核心。我们将学习如何编写能够以高效和安全的方式利用所有可用 CPU 核心的应用程序。
在本章中,我们将涵盖以下主题:
-
探索 C++中的线程支持
-
探索数据同步
-
使用条件变量
-
使用原子变量
-
使用 C++内存模型
-
探索无锁同步
-
在共享内存中使用原子变量
-
探索异步函数和期货
这些示例可以用作构建自己的高效多线程和多进程同步代码的示例。
探索 C++中的线程支持
在 C++11 之前,线程完全超出了 C++作为一种语言的范围。开发人员可以使用特定于平台的库,如 pthread 或 Win32 应用程序编程接口(API)。由于每个库都有自己的行为,将应用程序移植到另一个平台需要大量的开发和测试工作。
C++11 引入了线程作为 C++标准的一部分,并在其标准库中定义了一组类来创建多线程应用程序。
在这个示例中,我们将学习如何使用 C++在单个应用程序中生成多个并发线程。
如何做…
在这个示例中,我们将学习如何创建两个并发运行的工作线程。
-
在您的
〜/test工作目录中,创建一个名为threads的子目录。 -
使用您喜欢的文本编辑器在
threads子目录中创建一个名为threads.cpp的文件。将代码片段复制到threads.cpp文件中:
#include <chrono>
#include <iostream>
#include <thread>
void worker(int index) {
for (int i = 0; i < 10; i++) {
std::cout << "Worker " << index << " begins" << std::endl;
std::this_thread::sleep_for(std::chrono::milliseconds(50));
std::cout << "Worker " << index << " ends" << std::endl;
std::this_thread::sleep_for(std::chrono::milliseconds(1));
}
}
int main() {
std::thread worker1(worker, 1);
std::thread worker2(worker, 2);
worker1.join();
worker2.join();
std::cout << "Done" << std::endl;
}
- 在
loop子目录中创建一个名为CMakeLists.txt的文件,内容如下:
cmake_minimum_required(VERSION 3.5.1)
project(threads)
add_executable(threads threads.cpp)
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)
SET(CMAKE_CXX_FLAGS "--std=c++11")
target_link_libraries(threads pthread)
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)
您可以构建并运行应用程序。
它是如何工作的…
在这个应用程序中,我们定义了一个名为worker的函数。为了保持代码简单,它并没有做太多有用的工作,只是打印Worker X开始和Worker X结束 10 次,消息之间有 50 毫秒的延迟。
在main函数中,我们创建了两个工作线程,worker1和worker2:
std::thread worker1(worker, 1);
std::thread worker2(worker, 2);
我们向线程构造函数传递了两个参数:
-
在线程中运行的函数。
-
函数的参数。由于我们将先前定义的
worker函数作为线程函数传递,参数应该与其类型匹配——在我们的例子中,它是int。
这样,我们定义了两个工作线程,它们执行相同的工作,但具有不同的索引——1和2。
线程一旦创建就立即开始运行;不需要调用任何额外的方法来启动它们。它们完全并行执行,正如我们从程序输出中看到的那样:

我们的工作线程的输出是混合的,有时会混乱,比如Worker Worker 1 ends2 ends。这是因为终端的输出也是并行工作的。
由于工作线程是独立执行的,主线程在创建工作线程后没有任何事情可做。但是,如果主线程的执行达到main函数的末尾,程序将终止。为了避免这种情况,我们为每个工作线程添加了join方法的调用。这种方法会阻塞,直到线程终止。这样,我们只有在两个工作线程完成工作后才退出主程序。
探索数据同步
数据同步是处理多个执行线程的任何应用程序的重要方面。不同的线程经常需要访问相同的变量或内存区域。两个或更多独立线程同时写入同一内存可能导致数据损坏。即使在另一个线程更新变量时同时读取该变量也是危险的,因为在读取时它可能只被部分更新。
为了避免这些问题,并发线程可以使用所谓的同步原语,这是使对共享内存的访问变得确定和可预测的 API。
与线程支持的情况类似,C++语言在 C++11 标准之前没有提供任何同步原语。从 C++11 开始,一些同步原语被添加到 C++标准库中作为标准的一部分。
在这个配方中,我们将学习如何使用互斥锁和锁保护来同步对变量的访问。
如何做…
在前面的配方中,我们学习了如何完全并发地运行两个工作线程,并注意到这可能导致终端输出混乱。我们将修改前面配方中的代码,添加同步,使用互斥锁和锁保护,并查看区别。
-
在您的
~/test工作目录中,创建一个名为mutex的子目录。 -
使用您喜欢的文本编辑器在
mutex子目录中创建一个mutex.cpp文件。将代码片段复制到mutex.cpp文件中:
#include <chrono>
#include <iostream>
#include <mutex>
#include <thread>
std::mutex m;
void worker(int index) {
for (int i = 0; i < 10; i++) {
{
std::lock_guard<std::mutex> g(m);
std::cout << "Worker " << index << " begins" << std::endl;
std::this_thread::sleep_for(std::chrono::milliseconds(50));
std::cout << "Worker " << index << " ends" << std::endl;
}
std::this_thread::sleep_for(std::chrono::milliseconds(1));
}
}
int main() {
std::thread worker1(worker, 1);
std::thread worker2(worker, 2);
worker1.join();
worker2.join();
std::cout << "Done" << std::endl;
}
- 在
loop子目录中创建一个名为CMakeLists.txt的文件,内容如下:
cmake_minimum_required(VERSION 3.5.1)
project(mutex)
add_executable(mutex mutex.cpp)
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)
SET(CMAKE_CXX_FLAGS "--std=c++11")
target_link_libraries(mutex pthread)
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)
您可以构建并运行应用程序。
工作原理…
构建并运行应用程序后,我们可以看到其输出与线程应用程序的输出类似。但也有明显的区别:

首先,输出不会混乱。其次,我们可以看到一个清晰的顺序——没有一个工作线程被另一个工作线程中断,每个开始都后跟相应的结束。区别在于源代码的突出部分。我们创建一个全局的mutex m:
std::mutex m;
然后,我们使用lock_guard来保护我们的关键代码部分,从打印Worker X begins的行开始,到打印Worker X ends的行结束。
lock_guard是互斥锁的包装器,它使用RAII(资源获取即初始化的缩写)技术,在构造函数中自动锁定相应的互斥锁,当定义锁对象时,它在析构函数中解锁,在其作用域结束时。这就是为什么我们添加额外的花括号来定义我们关键部分的作用域:
{
std::lock_guard<std::mutex> g(m);
std::cout << "Worker " << index << " begins" << std::endl;
std::this_thread::sleep_for(std::chrono::milliseconds(50));
std::cout << "Worker " << index << " ends" << std::endl;
}
虽然可以通过调用其 lock 和 unlock 方法显式锁定和解锁互斥锁,但不建议这样做。忘记解锁已锁定的互斥锁会导致难以检测和难以调试的多线程同步问题。RAII 方法会自动解锁互斥锁,使代码更安全、更易读和更易理解。
还有更多…
正确实现线程同步需要非常注意细节和彻底分析。多线程应用程序中一个非常常见的问题是死锁。这是一种情况,其中一个线程被阻塞,因为它正在等待另一个线程,而另一个线程又被阻塞,因为它正在等待第一个线程。因此,两个线程被无限期地阻塞。
如果需要两个或更多个互斥锁进行同步,则会发生死锁。C++17 引入了std::scoped_lock,可在en.cppreference.com/w/cpp/thread/scoped_lock上找到,这是一个多个互斥锁的 RAII 包装器,有助于避免死锁。
使用条件变量
我们学会了如何同步两个或多个线程对同一变量的同时访问。线程访问变量的特定顺序并不重要;我们只是防止了对变量的同时读写。
一个线程等待另一个线程开始处理数据是一个常见的情况。在这种情况下,当数据可用时,第二个线程应该由第一个线程通知。这可以使用条件变量来完成,C++从 C++11 标准开始支持。
在这个配方中,我们将学习如何使用条件变量在数据可用时立即激活数据处理的单独线程。
如何做…
我们将实现一个具有两个工作线程的应用程序,类似于我们在探索数据同步配方中创建的应用程序。
-
在您的
~/test工作目录中,创建一个名为condvar的子目录。 -
使用您喜欢的文本编辑器在
condvar子目录中创建一个名为condv.cpp的文件。 -
现在,在
condvar.cpp中放置所需的头文件并定义全局变量:
#include <condition_variable>
#include <iostream>
#include <mutex>
#include <thread>
#include <vector>
std::mutex m;
std::condition_variable cv;
std::vector<int> result;
int next = 0;
- 在定义全局变量之后,我们添加了我们的
worker函数,它与前面的配方中的worker函数类似:
void worker(int index) {
for (int i = 0; i < 10; i++) {
std::unique_lock<std::mutex> l(m);
cv.wait(l, [=]{return next == index; });
std::cout << "worker " << index << "\n";
result.push_back(index);
next = next + 1;
if (next > 2) { next = 1; };
cv.notify_all();
}
}
- 最后,我们定义我们的入口点——
main函数:
int main() {
std::thread worker1(worker, 1);
std::thread worker2(worker, 2);
{
std::lock_guard<std::mutex> l(m);
next = 1;
}
std::cout << "Start\n";
cv.notify_all();
worker1.join();
worker2.join();
for (int e : result) {
std::cout << e << ' ';
}
std::cout << std::endl;
}
- 在
loop子目录中创建一个名为CMakeLists.txt的文件,内容如下:
cmake_minimum_required(VERSION 3.5.1)
cmake_minimum_required(VERSION 3.5.1)
project(condvar)
add_executable(condvar condvar.cpp)
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)
SET(CMAKE_CXX_FLAGS "--std=c++11")
target_link_libraries(condvar pthread)
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)
您可以构建并运行应用程序。
工作原理…
与我们在探索数据同步配方中创建的应用程序类似,我们创建了两个工作线程worker1和worker2,它们使用相同的worker函数线程,只是index参数不同。
除了向控制台打印消息外,工作线程还更新了一个全局向量 result。每个工作线程只是在其循环中将其索引添加到result变量中,如下命令所示:
std::vector<int> result;
我们希望每个工作线程只在轮到它时将其索引添加到结果中——worker 1,然后worker 2,然后再次worker 1,依此类推。没有同步是不可能做到这一点的;然而,简单的互斥同步是不够的。它可以保证两个并发线程不会同时访问代码的同一关键部分,但不能保证顺序。可能是worker 1在worker 2锁定之前再次锁定互斥锁。
为了解决排序问题,我们定义了一个cv条件变量和一个next整数变量:
std::condition_variable cv;
int next = 0;
next变量包含一个工作线程的索引。它初始化为0,并在main函数中设置为特定的工作线程索引。由于这个变量被多个线程访问,我们在锁保护下进行操作:
{
std::lock_guard<std::mutex> l(m);
next = 1;
}
尽管工作线程在创建后开始执行,但它们两者立即被条件变量阻塞,等待next变量的值与它们的索引匹配。条件变量需要std::unique_lock进行等待。我们在调用wait方法之前创建它:
std::unique_lock<std::mutex> l(m);
cv.wait(l, [=]{return next == index; });
虽然条件变量cv在main函数中设置为1,但这还不够。我们需要显式通知等待条件变量的线程。我们使用notify_all方法来做到这一点:
cv.notify_all();
这将唤醒所有等待的线程,它们将自己的索引与next变量进行比较。匹配的线程解除阻塞,而所有其他线程再次进入睡眠状态。
活动线程向控制台写入消息并更新result变量。然后,它更新next变量以选择下一个要激活的线程。我们递增索引直到达到最大值,然后将其重置为1:
next = next + 1;
if (next > 2) { next = 1; };
与main函数中的代码情况类似,在决定next线程的索引后,我们需要调用notify_all来唤醒所有线程,并让它们决定轮到谁工作:
cv.notify_all();
在工作线程工作时,main函数等待它们的完成:
worker1.join();
worker2.join();
当所有工作线程完成时,将打印result变量的值:
for (int e : result) {
std::cout << e << ' ';
}
构建并运行程序后,我们得到以下输出:

正如我们所看到的,所有线程都按预期顺序激活了。
还有更多…
在这个示例中,我们只使用了条件变量对象提供的一些方法。除了简单的wait函数外,还有一些等待特定时间或等待直到达到指定时间点的函数。在en.cppreference.com/w/cpp/thread/condition_variable上了解更多关于C++条件变量类的信息。
使用原子变量
原子变量之所以被命名为原子变量,是因为它们不能被部分读取或写入。例如,比较Point和int数据类型:
struct Point {
int x, y;
};
Point p{0, 0};
int b = 0;
p = {10, 10};
b = 10;
在这个例子中,修改p变量相当于两次赋值:
p.x = 10;
p.y = 10;
这意味着任何并发线程读取p变量时可能会得到部分修改的数据,比如x=10,y=0,这可能导致难以检测和难以重现的错误计算。这就是为什么对这种数据类型的访问应该是同步的。
那么b变量呢?它能被部分修改吗?答案是:取决于平台。然而,C++提供了一组数据类型和模板,以确保变量作为一个整体原子地一次性改变。
在这个示例中,我们将学习如何使用原子变量来同步多个线程。由于原子变量不能被部分修改,因此不需要使用互斥锁或其他昂贵的同步原语。
如何做…
我们将创建一个应用程序,生成两个工作线程来并发更新一个数据数组。我们将使用原子变量而不是互斥锁,以确保并发更新是安全的。
-
在你的
~/test工作目录中,创建一个名为atomic的子目录。 -
使用你喜欢的文本编辑器在
atomic子目录中创建一个名为atomic.cpp的文件。 -
现在,我们放置所需的头文件,并在
atomic.cpp中定义全局变量:
#include <atomic>
#include <chrono>
#include <iostream>
#include <thread>
#include <vector>
std::atomic<size_t> shared_index{0};
std::vector<int> data;
- 在定义全局变量之后,我们添加我们的
worker函数。它类似于之前示例中的worker函数,但除了一个index之外,它还有一个额外的参数timeout:
void worker(int index, int timeout) {
while(true) {
size_t worker_index = shared_index.fetch_add(1);
if (worker_index >= data.size()) {
break;
}
std::cout << "Worker " << index << " handles "
<< worker_index << std::endl;
data[worker_index] = data[worker_index] * 2;
std::this_thread::sleep_for(std::chrono::milliseconds(timeout));
}
}
- 最后,我们定义我们的入口点——
main函数:
int main() {
for (int i = 0; i < 10; i++) {
data.emplace_back(i);
}
std::thread worker1(worker, 1, 50);
std::thread worker2(worker, 2, 20);
worker1.join();
worker2.join();
std::cout << "Result: ";
for (auto& v : data) {
std::cout << v << ' ';
}
std::cout << std::endl;
}
- 在
loop子目录中创建一个名为CMakeLists.txt的文件,并包含以下内容:
cmake_minimum_required(VERSION 3.5.1)
project(atomic)
add_executable(atomic atomic.cpp)
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)
SET(CMAKE_CXX_FLAGS "--std=c++11")
target_link_libraries(atomic pthread)
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)
你可以构建并运行应用程序。
工作原理…
我们正在创建一个应用程序,使用多个工作线程更新数组的所有元素。对于昂贵的更新操作,这种方法可以在多核平台上实现显著的性能提升。
困难在于在多个工作线程之间共享工作,因为它们每个可能需要不同的时间来处理数据元素。
我们使用一个shared_index原子变量来存储尚未被任何工作线程声明的下一个元素的索引。这个变量,以及要处理的数组,被声明为全局变量:
std::atomic<size_t> shared_index{0};
std::vector<int> data;
我们的worker函数类似于之前的示例中的worker函数,但有重要的区别。首先,它有一个额外的参数timeout。这用于模拟处理每个元素所需的时间差异。
其次,我们的工作线程不是在固定次数的迭代中运行,而是在一个循环中运行,直到shared_index变量达到最大值。这表示所有元素都已被处理,工作线程可以终止。
在每次迭代中,一个工作线程读取shared_index的值。如果有要处理的元素,它将shared_index变量的值存储在一个本地的worker_index变量中,并同时增加shared_index变量。
虽然可以像使用常规变量一样使用原子变量——首先获取其当前值,然后增加变量——但这可能导致竞争条件。两个工作线程几乎同时读取变量。在这种情况下,它们都获得相同的值,然后开始处理相同的元素,相互干扰。这就是为什么我们使用特殊的fetch_add方法,它增加变量并返回增加之前的值作为单个、不可中断的操作:
size_t worker_index = shared_index.fetch_add(1);
如果worker_index变量达到数组的大小,这意味着所有元素都已经处理完毕,工作线程可以终止:
if (worker_index >= data.size()) {
break;
}
如果worker_index变量有效,则工作线程将使用它来更新数组元素的值。在我们的情况下,我们只是将它乘以2:
data[worker_index] = data[worker_index] * 2;
为了模拟昂贵的数据操作,我们使用自定义延迟。延迟的持续时间由timeout参数确定:
std::this_thread::sleep_for(std::chrono::milliseconds(timeout));
在main函数中,我们向数据向量中添加要处理的元素。我们使用循环将向量填充为从零到九的数字:
for (int i = 0; i < 10; i++) {
data.emplace_back(i);
}
初始数据集准备好后,我们创建两个工作线程,提供index和timeout参数。使用工作线程的不同超时来模拟不同的性能:
std::thread worker1(worker, 1, 50);
std::thread worker2(worker, 2, 20);
然后,我们等待两个工作线程完成它们的工作,并将结果打印到控制台。当我们构建和运行我们的应用程序时,我们会得到以下输出:

正如我们所看到的,Worker 2处理的元素比Worker 1多,因为它的超时是 20 毫秒,而Worker 1是 50 毫秒。此外,所有元素都按预期进行处理,没有遗漏和重复。
还有更多…
我们学会了如何处理整数原子变量。虽然这种类型的原子变量是最常用的,但 C++也允许定义其他类型的原子变量,包括非整数类型,只要它们是平凡可复制的、可复制构造的和可复制赋值的。
除了我们在示例中使用的fetch_add方法,原子变量还有其他类似的方法,可以帮助开发人员在单个操作中查询值和修改变量。考虑使用这些方法来避免竞争条件或使用互斥锁进行昂贵的同步。
在 C++20 中,原子变量获得了wait、notify_all和notify_one方法,类似于条件变量的方法。它们允许使用更高效、轻量级的原子变量来实现以前需要条件变量的逻辑。
有关原子变量的更多信息,请访问en.cppreference.com/w/cpp/atomic/atomic。
使用 C++内存模型
从 C++11 标准开始,C++定义了线程和同步的 API 和原语作为语言的一部分。在具有多个处理器核心的系统中进行内存同步是复杂的,因为现代处理器可以通过重新排序指令来优化代码执行。即使使用原子变量,也不能保证数据按预期顺序修改或访问,因为编译器可以改变顺序。
为了避免歧义,C++11 引入了内存模型,定义了对内存区域的并发访问行为。作为内存模型的一部分,C++定义了std::memory_order枚举,它向编译器提供有关预期访问模型的提示。这有助于编译器以不干扰预期代码行为的方式优化代码。
在这个示例中,我们将学习如何使用最简单的std::memory_order枚举来实现一个共享计数器变量。
如何做…
我们正在实现一个应用程序,其中有一个共享计数器,由两个并发的工作线程递增。
-
在您的
~/test工作目录中,创建一个名为memorder的子目录。 -
使用您喜欢的文本编辑器在
atomic子目录中创建一个memorder.cpp文件。 -
现在,我们在
memorder.cpp中放置所需的头文件并定义全局变量:
#include <atomic>
#include <chrono>
#include <iostream>
#include <thread>
#include <vector>
std::atomic<bool> running{true};
std::atomic<int> counter{0};
- 全局变量定义后,我们添加我们的
worker函数。该函数只是递增一个计数器,然后休眠一段特定的时间间隔:
void worker() {
while(running) {
counter.fetch_add(1, std::memory_order_relaxed);
}
}
- 然后,我们定义我们的
main函数:
int main() {
std::thread worker1(worker);
std::thread worker2(worker);
std::this_thread::sleep_for(std::chrono::seconds(1));
running = false;
worker1.join();
worker2.join();
std::cout << "Counter: " << counter << std::endl;
}
- 在
loop子目录中创建一个名为CMakeLists.txt的文件,内容如下:
cmake_minimum_required(VERSION 3.5.1)
project(memorder)
add_executable(memorder memorder.cpp)
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)
SET(CMAKE_CXX_FLAGS "--std=c++11")
target_link_libraries(memorder pthread)
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)
您可以构建和运行应用程序。
工作原理…
在我们的应用程序中,我们将创建两个工作线程,它们将递增一个共享计数器,并让它们运行一段特定的时间。
首先,我们定义两个全局原子变量running和counter:
std::atomic<bool> running{true};
std::atomic<int> counter{0};
running变量是一个二进制标志。当它设置为true时,工作线程应该继续运行。在它变为false后,工作线程应该终止。
counter变量是我们的共享计数器。工作线程将同时递增它。我们使用了在使用原子变量示例中已经使用过的fetch_add方法。它用于原子地递增一个变量。在这个示例中,我们将额外的参数std::memory_order_relaxed传递给这个方法:
counter.fetch_add(1, std::memory_order_relaxed);
这个参数是一个提示。虽然原子性和修改的一致性对于计数器的实现很重要并且应该得到保证,但并发内存访问之间的顺序并不那么重要。std::memory_order_relaxed为原子变量定义了这种内存访问。将其传递给fetch_add方法允许我们为特定目标平台进行微调,以避免不必要的同步延迟,从而影响性能。
在main函数中,我们创建两个工作线程:
std::thread worker1(worker);
std::thread worker2(worker);
然后,主线程暂停 1 秒。暂停后,主线程将running变量的值设置为false,表示工作线程应该终止。
running = false;
工作线程终止后,我们打印计数器的值:

生成的计数器值由传递给worker函数的超时间隔确定。在我们的示例中,更改fetch_add方法中的内存顺序类型不会导致结果值的明显变化。但是,它可以提高使用原子变量的高并发应用程序的性能,因为编译器可以重新排序并发线程中的操作而不会破坏应用程序逻辑。这种优化高度依赖于开发人员的意图,并且不能在没有开发人员提示的情况下自动推断。
还有更多…
C++内存模型和内存排序类型是复杂的主题,需要深入了解现代 CPU 如何访问内存并优化其代码执行。C++内存模型参考,en.cppreference.com/w/cpp/language/memory_model提供了大量信息,是学习多线程应用程序优化的高级技术的良好起点。
探索无锁同步
在前面的示例中,我们学习了如何使用互斥锁和锁同步多个线程对共享数据的访问。如果多个线程尝试运行由锁保护的代码的关键部分,只有一个线程可以一次执行。所有其他线程都必须等待,直到该线程离开关键部分。
然而,在某些情况下,可以在没有互斥锁和显式锁的情况下同步对共享数据的访问。其思想是使用数据的本地副本进行修改,然后在单个、不可中断和不可分割的操作中更新共享副本。
这种类型的同步取决于硬件。目标处理器应该提供某种形式的比较和交换(CAS)指令。这检查内存位置中的值是否与给定值匹配,并且仅当它们匹配时才用新给定值替换它。由于它是单处理器指令,它不会被上下文切换中断。这使它成为更复杂的原子操作的基本构建块。
在本教程中,我们将学习如何检查原子变量是否是无锁的,或者是使用互斥体或其他锁定操作实现的。我们还将根据 C++11 中的原子比较交换函数的示例实现一个无锁推送操作,该示例可在en.cppreference.com/w/cpp/atomic/atomic_compare_exchange上找到。
如何做…
我们正在实现一个简单的Stack类,它提供了一个构造函数和一个名为Push的函数。
-
在您的
~/test工作目录中,创建一个名为lockfree的子目录。 -
使用您喜欢的文本编辑器在
lockfree子目录中创建一个名为lockfree.cpp的文件。 -
现在,我们放入所需的头文件,并在
lockfree.cpp文件中定义一个Node辅助数据类型:
#include <atomic>
#include <iostream>
struct Node {
int data;
Node* next;
};
- 接下来,我们定义一个简单的
Stack类。这使用Node数据类型来组织数据存储:
class Stack {
std::atomic<Node*> head;
public:
Stack() {
std::cout << "Stack is " <<
(head.is_lock_free() ? "" : "not ")
<< "lock-free" << std::endl;
}
void Push(int data) {
Node* new_node = new Node{data, nullptr};
new_node->next = head.load();
while(!std::atomic_compare_exchange_weak(
&head,
&new_node->next,
new_node));
}
};
- 最后,我们定义一个简单的
main函数,创建一个Stack实例并将一个元素推入其中:
int main() {
Stack s;
s.Push(1);
}
- 在
loop子目录中创建一个名为CMakeLists.txt的文件,内容如下:
cmake_minimum_required(VERSION 3.5.1)
project(lockfree)
add_executable(lockfree lockfree.cpp)
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)
SET(CMAKE_CXX_FLAGS "--std=c++11")
target_link_libraries(lockfree pthread)
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)
您可以构建并运行应用程序。
工作原理…
我们创建了一个简单的应用程序,实现了一个整数值的简单堆栈。我们将堆栈的元素存储在动态内存中,对于每个元素,我们应该能够确定其后面的元素。
为此,我们定义了一个Node辅助结构,它有两个数据字段。data字段存储元素的实际值,而next字段是堆栈中下一个元素的指针:
int data;
Node* next;
然后,我们定义Stack类。通常,堆栈意味着两个操作:
-
Push:将一个元素放在堆栈顶部 -
Pull:从堆栈顶部获取一个元素
为了跟踪堆栈的顶部,我们创建一个top变量,它保存指向Node对象的指针。它将是我们堆栈的顶部:
std::atomic<Node*> head;
我们还定义了一个简单的构造函数,它初始化了我们的top变量的值,并检查它是否是无锁的。在 C++中,原子变量可以使用原子一致性、可用性和分区容错性(CAP)操作或使用常规互斥体来实现。这取决于目标 CPU:
(head.is_lock_free() ? "" : "not ")
在我们的应用程序中,我们只实现了Push方法,以演示如何以无锁的方式实现它。
Push方法接受要放在堆栈顶部的值。为此,我们创建一个新的Node对象的实例:
Node* new_node = new Node{data, nullptr};
由于我们将元素放在堆栈的顶部,新创建的实例的指针应该分配给top变量,并且应该将top变量的旧值分配给我们的新Node对象的next指针。
然而,直接这样做是不安全的。两个或更多线程可以同时修改top变量,导致数据损坏。我们需要某种数据同步。我们可以使用锁和互斥体来做到这一点,但也可以以无锁的方式来实现。
这就是为什么我们最初只更新下一个指针。由于我们的新Node对象还不是堆栈的一部分,所以我们可以在没有同步的情况下执行,因为其他线程无法访问它:
new_node->next = head.load();
现在,我们需要将其添加为堆栈的新top变量。我们使用std::atomic_compare_exchange_weak函数进行循环:
while(!std::atomic_compare_exchange_weak(
&head,
&new_node->next,
new_node));
此函数将top变量的值与新元素的next指针中存储的值进行比较。如果它们匹配,则将top变量的值替换为新节点的指针并返回true。否则,它将top变量的值写入新元素的next指针并返回false。由于我们在下一步中更新了next指针以匹配top变量,这只能发生在另一个线程在调用std::atomic_compare_exchange_weak函数之前修改了它。最终,该函数将返回true,表示top头部已更新为指向我们的元素的指针。
main函数创建一个堆栈的实例,并将一个元素推入其中。在输出中,我们可以看到底层实现是否是无锁的:

对于我们的目标,实现是无锁的。
还有更多…
无锁同步是一个非常复杂的话题。开发无锁数据结构和算法需要大量的工作。即使是使用无锁操作实现简单的Push逻辑也不容易理解。对于代码的适当分析和调试需要更大的努力。通常,这可能导致难以注意和难以实现的微妙问题。
尽管无锁算法的实现可以提高应用程序的性能,但考虑使用现有的无锁数据结构库之一,而不是编写自己的库。例如,Boost.Lockfree提供了一系列无锁数据类型供您使用。
在共享内存中使用原子变量
我们学会了如何使用原子变量来同步多线程应用程序中的两个或多个线程。但是,原子变量也可以用于同步作为独立进程运行的独立应用程序。
我们已经知道如何在两个应用程序之间交换数据使用共享内存。现在,我们可以结合这两种技术——共享内存和原子变量——来实现两个独立应用程序的数据交换和同步。
如何做…
在这个示例中,我们将修改我们在第六章中创建的应用程序,内存管理,用于在两个处理器之间使用共享内存区域交换数据。
-
在您的
~/test工作目录中,创建一个名为shmatomic的子目录。 -
使用您喜欢的文本编辑器在
shmatomic子目录中创建一个名为shmatomic.cpp的文件。 -
我们重用了我们在
shmem应用程序中创建的共享内存数据结构。将公共头文件和常量放入shmatomic.cpp文件中:
#include <atomic>
#include <iostream>
#include <chrono>
#include <thread>
#include <sys/mman.h>
#include <fcntl.h>
#include <unistd.h>
const char* kSharedMemPath = "/sample_point";
- 接下来,开始定义模板化的
SharedMem类:
template<class T>
class SharedMem {
int fd;
T* ptr;
const char* name;
public:
- 该类将有一个构造函数,一个析构函数和一个 getter 方法。让我们添加构造函数:
SharedMem(const char* name, bool owner=false) {
fd = shm_open(name, O_RDWR | O_CREAT, 0600);
if (fd == -1) {
throw std::runtime_error("Failed to open a shared
memory region");
}
if (ftruncate(fd, sizeof(T)) < 0) {
close(fd);
throw std::runtime_error("Failed to set size of a shared
memory region");
};
ptr = (T*)mmap(nullptr, sizeof(T), PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);
if (!ptr) {
close(fd);
throw std::runtime_error("Failed to mmap a shared memory
region");
}
this->name = owner ? name : nullptr;
}
- 接下来是简单的析构函数和 getter:
~SharedMem() {
munmap(ptr, sizeof(T));
close(fd);
if (name) {
std::cout << "Remove shared mem instance " << name << std::endl;
shm_unlink(name);
}
}
T& get() const {
return *ptr;
}
};
- 现在,我们定义要用于数据交换和同步的数据类型:
struct Payload {
std::atomic_bool data_ready;
std::atomic_bool data_processed;
int index;
};
- 接下来,我们定义一个将生成数据的函数:
void producer() {
SharedMem<Payload> writer(kSharedMemPath);
Payload& pw = writer.get();
if (!pw.data_ready.is_lock_free()) {
throw std::runtime_error("Flag is not lock-free");
}
for (int i = 0; i < 10; i++) {
pw.data_processed.store(false);
pw.index = i;
pw.data_ready.store(true);
while(!pw.data_processed.load());
}
}
- 接下来是消耗数据的函数:
void consumer() {
SharedMem<Payload> point_reader(kSharedMemPath, true);
Payload& pr = point_reader.get();
if (!pr.data_ready.is_lock_free()) {
throw std::runtime_error("Flag is not lock-free");
}
for (int i = 0; i < 10; i++) {
while(!pr.data_ready.load());
pr.data_ready.store(false);
std::cout << "Processing data chunk " << pr.index << std::endl;
pr.data_processed.store(true);
}
}
- 最后,我们添加我们的
main函数,将所有内容联系在一起:
int main() {
if (fork()) {
consumer();
} else {
producer();
}
}
- 在
loop子目录中创建一个名为CMakeLists.txt的文件,并包含以下内容:
cmake_minimum_required(VERSION 3.5.1)
project(shmatomic)
add_executable(shmatomic shmatomic.cpp)
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)
SET(CMAKE_CXX_FLAGS "--std=c++11")
target_link_libraries(shmatomic pthread rt)
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)
您可以构建并运行应用程序。
工作原理…
在我们的应用程序中,我们重用了我们在第六章中介绍的模板化的SharedMem类,内存管理。该类用于在共享内存区域中存储特定类型的元素。让我们快速回顾一下它的工作原理。
SharedMem类是可移植操作系统接口(POSIX)共享内存 API 的包装器。它定义了三个私有数据字段来保存特定于系统的处理程序和指针,并公开由两个函数组成的公共接口:
-
一个接受共享区域名称和所有权标志的构造函数
-
一个
get方法,返回存储在共享内存中的对象的引用
该类还定义了一个析构函数,执行所有必要的操作以正确关闭共享对象。因此,SharedMem类可以用于使用 C++ RAII 习语进行安全资源管理。
SharedMem类是一个模板类。它由我们想要存储在共享内存中的数据类型参数化。为此,我们定义了一个名为Payload的结构:
struct Payload {
std::atomic_bool data_ready;
std::atomic_bool data_processed;
int index;
};
它有一个index整数变量,我们将使用它作为数据交换字段,并且有两个原子布尔标志,data_ready和data_processed,用于数据同步。
我们还定义了两个函数,producer和consumer,它们将在单独的进程中工作,并使用共享内存区域相互交换数据。
producer函数正在生成数据块。首先,它创建了SharedMem类的一个实例,由Payload数据类型参数化。它将共享内存区域的路径传递给SharedMem构造函数:
SharedMem<Payload> writer(kSharedMemPath);
创建共享内存实例后,它获取对存储在其中的有效负载数据的引用,并检查我们在Payload数据类型中定义的任何原子标志是否是无锁定的:
if (!pw.data_ready.is_lock_free()) {
throw std::runtime_error("Flag is not lock-free");
}
该函数在循环中生成 10 个数据块。数据块的索引被放入有效负载的index字段中:
pw.index = i;
但是,除了将数据放入共享内存中,我们还需要同步对这些数据的访问。这就是我们使用原子标志的时候。
对于每次迭代,在更新index字段之前,我们重置data_processed标志。更新索引后,我们设置data ready标志,这是向消费者指示新的数据块已准备就绪的指示器,并等待数据被消费者处理。我们循环直到data_processed标志变为true,然后进入下一个迭代:
pw.data_ready.store(true);
while(!pw.data_processed.load());
consumer函数的工作方式类似。由于它在一个单独的进程中工作,它通过使用相同的路径创建SharedMem类的实例来打开相同的共享内存区域。我们还使consumer函数成为共享内存实例的所有者。这意味着它负责在SharedMem实例被销毁后删除共享内存区域:
SharedMem<Payload> point_reader(kSharedMemPath, true);
与producer函数类似,consumer函数检查原子标志是否是无锁定的,并进入数据消耗的循环。
对于每次迭代,它在一个紧密的循环中等待直到数据准备就绪:
while(!pr.data_ready.load());
在producer函数将data_ready标志设置为true后,consumer函数可以安全地读取和处理数据。在我们的实现中,它只将index字段打印到控制台。处理完数据后,consumer函数通过将data_processed标志设置为true来指示这一点:
pr.data_processed.store(true);
这触发了producer函数端的数据生产的下一个迭代:

结果,我们可以看到处理的数据块的确定性输出,没有遗漏或重复;这在数据访问不同步的情况下很常见。
探索异步函数和期货
在多线程应用程序中处理数据同步是困难的,容易出错,并且需要开发人员编写大量代码来正确对齐数据交换和数据通知。为了简化开发,C++11 引入了一种标准 API,以一种类似于常规同步函数调用的方式编写异步代码,并在底层隐藏了许多同步复杂性。
在这个示例中,我们将学习如何使用异步函数调用和期货在多个线程中运行我们的代码,几乎不需要额外的工作来进行数据同步。
如何做到这一点…
我们将实现一个简单的应用程序,调用一个长时间运行的函数,并等待其结果。在函数运行时,应用程序可以继续进行其他计算。
-
在您的
~/test工作目录中,创建一个名为async的子目录。 -
使用您喜欢的文本编辑器在
async子目录中创建一个名为async.cpp的文件。 -
将我们的应用程序代码放入
async.cpp文件中,从公共头文件和我们的长时间运行的函数开始:
#include <chrono>
#include <future>
#include <iostream>
int calculate (int x) {
auto start = std::chrono::system_clock::now();
std::cout << "Start calculation\n";
std::this_thread::sleep_for(std::chrono::seconds(1));
auto delta = std::chrono::system_clock::now() - start;
auto ms = std::chrono::duration_cast<std::chrono::milliseconds>(delta);
std::cout << "Done in " << ms.count() << " ms\n";
return x*x;
}
- 接下来,添加
test函数,调用长时间运行的函数:
void test(int value, int worktime) {
std::cout << "Request result of calculations for " << value << std::endl;
std::future<int> fut = std::async (calculate, value);
std::cout << "Keep working for " << worktime << " ms" << std::endl;
std::this_thread::sleep_for(std::chrono::milliseconds(worktime));
auto start = std::chrono::system_clock::now();
std::cout << "Waiting for result" << std::endl;
int result = fut.get();
auto delta = std::chrono::system_clock::now() - start;
auto ms = std::chrono::duration_cast<std::chrono::milliseconds>(delta);
std::cout << "Result is " << result
<< ", waited for " << ms.count() << " ms"
<< std::endl << std::endl;
}
- 最后,添加一个最简单的
main函数:
int main ()
{
test(5, 400);
test(8, 1200);
return 0;
}
- 在
loop子目录中创建一个名为CMakeLists.txt的文件,内容如下:
cmake_minimum_required(VERSION 3.5.1)
project(async)
add_executable(async async.cpp)
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)
SET(CMAKE_CXX_FLAGS "--std=c++14")
target_link_libraries(async pthread -static-libstdc++)
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)
您可以构建并运行应用程序。
工作原理…
在我们的应用程序中,我们定义了一个calculate函数,应该需要很长时间才能运行。从技术上讲,我们的函数计算整数参数的平方,但我们添加了人为的延迟,使其运行 1 秒钟。我们使用sleep_for标准库函数来为应用程序添加延迟:
std::this_thread::sleep_for(std::chrono::seconds(1));
除了计算,该函数还在控制台记录了开始工作时的时间,完成时的时间以及花费的时间。
接下来,我们定义了一个test函数,调用calculate函数,以演示异步调用的工作原理。
该函数有两个参数。第一个参数是传递给calculate函数的值。第二个参数是在运行calculate函数后并在请求结果之前,test函数将花费的时间。这样,我们模拟了函数可以在并行计算中执行的有用工作。
test函数通过异步模式运行calculate函数,并传递第一个参数value:
std::future<int> fut = std::async (calculate, value);
async函数隐式地生成一个线程,并开始执行calculate函数。
由于我们异步运行函数,结果还没有准备好。相反,async函数返回一个std::future的实例,一个在结果可用时将保存结果的对象。
接下来,我们模拟有用的工作。在我们的情况下,这是指定时间间隔的暂停。在可以并行完成的工作完成后,我们需要获取calculate函数的结果才能继续。为了请求结果,我们使用std::future对象的get方法,如下所示:
int result = fut.get();
get方法会阻塞,直到结果可用。然后,我们可以计算等待结果的时间,并将结果以及等待时间输出到控制台。
在main函数中,我们运行test函数来评估两种情况:
-
有用的工作所花费的时间比计算结果的时间更短。
-
有用的工作所花费的时间比计算结果的时间更长。
运行应用程序会产生以下输出。
在第一种情况下,我们可以看到我们开始计算,然后在计算完成之前开始等待结果。结果,get方法阻塞了 600 毫秒,直到结果准备就绪:

在第二种情况下,有用的工作花费了1200毫秒。正如我们所看到的,计算在结果被请求之前就已经完成了,因此get方法没有阻塞,立即返回了结果。
还有更多…
期货和异步函数提供了一个强大的机制来编写并行和易懂的代码。异步函数是灵活的,支持不同的执行策略。Promise 是另一种机制,使开发人员能够克服异步编程的复杂性。更多信息可以在std::future的参考页面找到[en.cppreference.com/w/cpp/thread/future], std::promise的参考页面[en.cppreference.com/w/cpp/thread/promise], 以及std::async的参考页面[en.cppreference.com/w/cpp/thread/async]。
第八章:通信和序列化
复杂的嵌入式系统很少由单个应用程序组成。将所有逻辑放在同一个应用程序中是脆弱的、容易出错的,有时甚至难以实现,因为系统的不同功能可能由不同的团队甚至不同的供应商开发。这就是为什么将函数的逻辑隔离在独立的应用程序中,并使用明确定义的协议相互通信是一种常见的方法,用于扩展嵌入式软件。此外,这种隔离可以通过最小的修改与托管在远程系统上的应用程序通信,使其更具可扩展性。我们将学习如何通过将其逻辑分割为相互通信的独立组件来构建健壮和可扩展的应用程序。
在本章中,我们将涵盖以下主题:
-
在应用程序中使用进程间通信
-
探索进程间通信的机制
-
学习消息队列和发布-订阅模型
-
使用 C++ lambda 进行回调
-
探索数据序列化
-
使用 FlatBuffers 库
本章中的示例将帮助您了解可扩展和平台无关的数据交换的基本概念。它们可以用于实现从嵌入式系统到云端或远程后端的数据传输,或者使用微服务架构设计嵌入式系统。
在应用程序中使用进程间通信
大多数现代操作系统使用底层硬件平台提供的内存虚拟化支持,以将应用程序进程彼此隔离。
每个进程都有自己完全独立于其他应用程序的虚拟地址空间。这为开发人员带来了巨大的好处。由于应用程序的地址进程是独立的,一个应用程序不能意外地破坏另一个应用程序的内存。因此,一个应用程序的失败不会影响整个系统。由于所有其他应用程序都在继续工作,系统可以通过重新启动失败的应用程序来恢复。
内存隔离的好处是有代价的。由于一个进程无法访问另一个进程的内存,它需要使用专用的应用程序编程接口(API)进行数据交换,或者由操作系统提供的进程间通信(IPC)。
在这个示例中,我们将学习如何使用共享文件在两个进程之间交换信息。这可能不是最高效的机制,但它是无处不在的,易于使用,并且对于各种实际用例来说足够好。
如何做…
在这个示例中,我们将创建一个示例应用程序,创建两个进程。一个进程生成数据,而另一个读取数据并将其打印到控制台:
-
在您的工作目录(
~/test)中,创建一个名为ipc1的子目录。 -
使用您喜欢的文本编辑器在
ipc1子目录中创建一个名为ipc1.cpp的文件。 -
我们将定义两个模板类来组织我们的数据交换。第一个类
Writer用于将数据写入文件。让我们将其定义放在ipc1.cpp文件中:
#include <fstream>
#include <iostream>
#include <thread>
#include <vector>
#include <unistd.h>
std::string kSharedFile = "/tmp/test.bin";
template<class T>
class Writer {
private:
std::ofstream out;
public:
Writer(std::string& name):
out(name, std::ofstream::binary) {}
void Write(const T& data) {
out.write(reinterpret_cast<const char*>(&data), sizeof(T));
}
};
- 接下来是
Reader类的定义,它负责从文件中读取数据:
template<class T>
class Reader {
private:
std::ifstream in;
public:
Reader(std::string& name) {
for(int count=10; count && !in.is_open(); count--) {
in.open(name, std::ifstream::binary);
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
}
T Read() {
int count = 10;
for (;count && in.eof(); count--) {
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
T data;
in.read(reinterpret_cast<char*>(&data), sizeof(data));
if (!in) {
throw std::runtime_error("Failed to read a message");
}
return data;
}
};
- 接下来,我们定义将用于我们数据的数据类型:
struct Message {
int x, y;
};
std::ostream& operator<<(std::ostream& o, const Message& m) {
o << "(x=" << m.x << ", y=" << m.y << ")";
}
- 为了将所有内容整合在一起,我们定义了
DoWrites和DoReads函数,以及调用它们的main函数:
void DoWrites() {
std::vector<Message> messages {{1, 0}, {0, 1}, {1, 1}, {0, 0}};
Writer<Message> writer(kSharedFile);
for (const auto& m : messages) {
std::cout << "Write " << m << std::endl;
writer.Write(m);
}
}
void DoReads() {
Reader<Message> reader(kSharedFile);
try {
while(true) {
std::cout << "Read " << reader.Read() << std::endl;
}
} catch (const std::runtime_error& e) {
std::cout << e.what() << std::endl;
}
}
int main(int argc, char** argv) {
if (fork()) {
DoWrites();
} else {
DoReads();
}
}
- 最后,创建一个包含程序构建规则的
CMakeLists.txt文件:
cmake_minimum_required(VERSION 3.5.1)
project(ipc1)
add_executable(ipc1 ipc1.cpp)
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)
SET(CMAKE_CXX_FLAGS "--std=c++11")
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)
现在可以构建和运行应用程序了。
工作原理…
在我们的应用程序中,我们探索了在文件系统中使用共享文件在两个独立进程之间进行数据交换。一个进程向文件写入数据,另一个从同一文件读取数据。
文件可以存储任何非结构化的字节序列。在我们的应用程序中,我们利用 C++模板的能力来处理严格类型化的 C++值,而不是原始字节流。这种方法有助于编写干净且无错误的代码。
我们从Write类的定义开始。它是标准 C++ fstream类的简单包装,用于文件输入/输出。该类的构造函数只打开一个文件流以进行以下写入:
Writer(std::string& name):
out(name, std::ofstream::binary) {}
除了构造函数,该类只包含一个名为Write的方法,负责向文件写入数据。由于文件 API 操作的是字节流,我们首先需要将我们的模板数据类型转换为原始字符缓冲区。我们可以使用 C++的reinterpret_cast来实现这一点:
out.write(reinterpret_cast<const char*>(&data), sizeof(T));
Reader类的工作与Writer类相反——它读取Writer类写入的数据。它的构造函数稍微复杂一些。由于数据文件可能在创建Reader类的实例时还没有准备好,构造函数会尝试在循环中打开它,直到成功打开为止。它会尝试 10 次,每次间隔 10 毫秒:
for(int count=10; count && !in.is_open(); count--) {
in.open(name, std::ifstream::binary);
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
Read方法从输入流中读取数据到临时值,并将其返回给调用者。与Write方法类似,我们使用reinterpret_cast来访问我们的数据对象的内存作为原始字符缓冲区:
in.read(reinterpret_cast<char*>(&data), sizeof(data));
我们还在Read方法中添加了一个等待循环,等待Write写入数据。如果我们到达文件的末尾,我们等待最多 1 秒钟获取新数据:
for (;count && in.eof(); count--) {
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
如果此时文件中没有可用的数据,或者出现 I/O 错误,我们会抛出异常来指示它:
if (!in) {
throw std::runtime_error("Failed to read a message");
}
请注意,我们不需要添加任何代码来处理文件在 1 秒内无法打开的情况,或者数据在一秒内不准备好的情况。这两种情况都由前面的代码处理。
现在Writer和Reader类已经实现,我们可以为我们的数据交换定义一个数据类型。在我们的应用程序中,我们将交换坐标,表示为x和y的整数值。我们的数据消息看起来像这样:
struct Message {
int x, y;
};
为了方便起见,我们重写了Message结构的<<运算符。每当Message的实例被写入输出流时,它都会被格式化为(x, y):
std::ostream& operator<<(std::ostream& o, const Message& m) {
o << "(x=" << m.x << ", y=" << m.y << ")";
}
准备工作已经就绪,让我们编写数据交换的函数。DoWrites函数定义了一个包含四个坐标的向量,并创建了一个Writer对象:
std::vector<Message> messages {{1, 0}, {0, 1}, {1, 1}, {0, 0}};
Writer<Message> writer(kSharedFile);
然后,它在循环中写入所有的坐标:
for (const auto& m : messages) {
std::cout << "Write " << m << std::endl;
writer.Write(m);
}
DoReads函数创建一个Reader类的实例,使用与之前的Writer实例相同的文件名。它进入一个无限循环,尝试读取文件中的所有消息:
while(true) {
std::cout << "Read " << reader.Read() << std::endl;
}
当没有更多的消息可用时,Read方法会抛出一个异常来中断循环:
} catch (const std::runtime_error& e) {
std::cout << e.what() << std::endl;
}
main函数创建了两个独立的进程,在其中一个进程中运行DoWrites,在另一个进程中运行DoReads。运行应用程序后,我们得到以下输出:

正如我们所看到的,写入者确实写入了四个坐标,读取者能够使用共享文件读取相同的四个坐标。
还有更多…
我们设计应用程序尽可能简单,专注于严格类型化的数据交换,并将数据同步和数据序列化排除在范围之外。我们将使用这个应用程序作为更高级技术的基础,这些技术将在接下来的示例中描述。
探索进程间通信的机制
现代操作系统提供了许多 IPC 机制,除了我们已经了解的共享文件之外,还有以下机制:
-
管道
-
命名管道
-
本地套接字
-
网络套接字
-
共享内存
有趣的是,其中许多提供的 API 与我们在使用常规文件时使用的 API 完全相同。因此,在这些类型的 IPC 之间切换是微不足道的,我们用来读写本地文件的相同代码可以用来与运行在远程网络主机上的应用程序进行通信。
在这个示例中,我们将学习如何使用名为POSIX的可移植操作系统接口(POSIX)命名管道来在同一台计算机上的两个应用程序之间进行通信。
准备工作
我们将使用作为在应用程序中使用进程间通信示例的一部分创建的应用程序的源代码作为本示例的起点。
如何做…
在这个示例中,我们将从使用常规文件进行 IPC 的源代码开始。我们将修改它以使用一种名为命名管道的 IPC 机制:
-
将
ipc1目录的内容复制到一个名为ipc2的新目录中。 -
打开
ipc1.cpp文件,在#include <unistd.h>后添加两个include实例:
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
- 通过在
Writer类的Write方法中添加一行来修改Write方法:
void Write(const T& data) {
out.write(reinterpret_cast<const char*>(&data), sizeof(T));
out.flush();
}
Reader类中的修改更为重要。构造函数和Read方法都受到影响:
template<class T>
class Reader {
private:
std::ifstream in;
public:
Reader(std::string& name):
in(name, std::ofstream::binary) {}
T Read() {
T data;
in.read(reinterpret_cast<char*>(&data), sizeof(data));
if (!in) {
throw std::runtime_error("Failed to read a message");
}
return data;
}
};
- 对
DoWrites函数进行小的更改。唯一的区别是在发送每条消息后添加 10 毫秒的延迟:
void DoWrites() {
std::vector<Message> messages {{1, 0}, {0, 1}, {1, 1}, {0, 0}};
Writer<Message> writer(kSharedFile);
for (const auto& m : messages) {
std::cout << "Write " << m << std::endl;
writer.Write(m);
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
}
- 最后,修改我们的
main函数,创建一个命名管道而不是一个常规文件:
int main(int argc, char** argv) {
int ret = mkfifo(kSharedFile.c_str(), 0600);
if (!ret) {
throw std::runtime_error("Failed to create named pipe");
}
if (fork()) {
DoWrites();
} else {
DoReads();
}
}
现在可以构建和运行应用程序了。
工作原理…
正如你所看到的,我们对应用程序的代码进行了最少量的更改。所有读写数据的机制和 API 保持不变。关键的区别隐藏在一行代码后面:
int ret = mkfifo(kSharedFile.c_str(), 0600);
这一行创建了一种特殊类型的文件,称为命名管道。它看起来像一个常规文件——它有一个名称、权限属性和修改时间。但是,它不存储任何真实的数据。写入到该文件的所有内容都会立即传递给从该文件读取的进程。
这种差异有一系列后果。由于文件中没有存储任何真实数据,所有的读取尝试都会被阻塞,直到有数据被写入。同样,写入也会被阻塞,直到读取者读取了先前的数据。
因此,不再需要外部数据同步。看一下Reader类的实现。它在构造函数或Read方法中都没有重试循环。
为了测试我们确实不需要使用任何额外的同步,我们在每条消息写入后添加了人为的延迟:
std::this_thread::sleep_for(std::chrono::milliseconds(10));
当我们构建和运行应用程序时,我们可以看到以下输出:

每个Write方法后面都跟着适当的Read方法,尽管我们在Reader代码中没有添加任何延迟或检查。操作系统的 IPC 机制会透明地为我们处理数据同步,从而使代码更清晰和可读。
还有更多…
如你所见,使用命名管道与使用常规函数一样简单。套接字 API 是 IPC 的另一种广泛使用的机制。它稍微复杂一些,但提供了更多的灵活性。通过选择不同的传输层,开发人员可以使用相同的套接字 API 来进行本地数据交换和与远程主机的网络连接。
有关套接字 API 的更多信息,请访问man7.org/linux/man-pages/man7/socket.7.html。
学习消息队列和发布-订阅模型
POSIX 操作系统提供的大多数 IPC 机制都非常基本。它们的 API 是使用文件描述符构建的,并且将输入和输出通道视为原始的字节序列。
然而,应用程序往往使用特定长度和目的的数据片段进行数据交换消息。尽管操作系统的 API 机制灵活且通用,但并不总是方便进行消息交换。这就是为什么在默认 IPC 机制之上构建了专用库和组件,以简化消息交换模式。
在这篇文章中,我们将学习如何使用发布者-订阅者(pub-sub)模型在两个应用程序之间实现异步数据交换。
这种模型易于理解,并且被广泛用于开发软件系统,这些系统被设计为相互独立、松散耦合的组件集合,它们之间进行通信。函数的隔离和异步数据交换使我们能够构建灵活、可扩展和健壮的解决方案。
在发布-订阅模型中,应用程序可以充当发布者、订阅者或两者兼而有之。应用程序不需要向特定应用程序发送请求并期望它们做出响应,而是可以向特定主题发布消息或订阅接收感兴趣的主题上的消息。在发布消息时,应用程序不关心有多少订阅者正在监听该主题。同样,订阅者不知道哪个应用程序将在特定主题上发送消息,或者何时期望收到消息。
操作方法…
我们在探索 IPC 机制配方中创建的应用程序已经包含了许多我们可以重用的构建模块,以实现发布/订阅通信。
Writer类可以充当发布者,Reader类可以充当订阅者。我们实现它们来处理严格定义的数据类型,这些数据类型将定义我们的消息。我们在前面的示例中使用的命名管道机制是在字节级别上工作的,并不能保证消息会自动传递。
为了克服这一限制,我们将使用 POSIX 消息队列 API,而不是命名管道。在它们的构造函数中,Reader和Writer都将接受用于标识消息队列的名称作为主题:
-
将我们在上一篇文章中创建的
ipc2目录的内容复制到一个新目录:ipc3。 -
让我们为 POSIX 消息队列 API 创建一个 C++包装器。在编辑器中打开
ipc1.cpp并添加所需的头文件和常量定义:
#include <unistd.h>
#include <signal.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <mqueue.h>
std::string kQueueName = "/test";
- 然后,定义一个
MessageQueue类。它将一个消息队列句柄作为其私有数据成员。我们可以使用构造函数和析构函数来管理句柄的安全打开和关闭,使用 C++ RAII 习惯用法。
class MessageQueue {
private:
mqd_t handle;
public:
MessageQueue(const std::string& name, int flags) {
handle = mq_open(name.c_str(), flags);
if (handle < 0) {
throw std::runtime_error("Failed to open a queue for
writing");
}
}
MessageQueue(const std::string& name, int flags, int max_count,
int max_size) {
struct mq_attr attrs = { 0, max_count, max_size, 0 };
handle = mq_open(name.c_str(), flags | O_CREAT, 0666,
&attrs);
if (handle < 0) {
throw std::runtime_error("Failed to create a queue");
}
}
~MessageQueue() {
mq_close(handle);
}
- 然后,我们定义两个简单的方法来将消息写入队列和从队列中读取消息:
void Send(const char* data, size_t len) {
if (mq_send(handle, data, len, 0) < 0) {
throw std::runtime_error("Failed to send a message");
}
}
void Receive(char* data, size_t len) {
if (mq_receive(handle, data, len, 0) < len) {
throw std::runtime_error("Failed to receive a message");
}
}
};
- 我们现在修改我们的
Writer和Reader类,以适应新的 API。我们的MessageQueue包装器完成了大部分繁重的工作,代码更改很小。Writer类现在看起来像这样:
template<class T>
class Writer {
private:
MessageQueue queue;
public:
Writer(std::string& name):
queue(name, O_WRONLY) {}
void Write(const T& data) {
queue.Send(reinterpret_cast<const char*>(&data), sizeof(data));
}
};
Reader类中的修改更加实质性。我们让它充当订阅者,并将直接从队列中获取和处理消息的逻辑封装到类中:
template<class T>
class Reader {
private:
MessageQueue queue;
public:
Reader(std::string& name):
queue(name, O_RDONLY) {}
void Run() {
T data;
while(true) {
queue.Receive(reinterpret_cast<char*>(&data),
sizeof(data));
Callback(data);
}
}
protected:
virtual void Callback(const T& data) = 0;
};
- 由于我们仍然希望尽可能地保持
Reader类的通用性,我们将定义一个新的类(CoordLogger),它是从Reader派生出来的,用于定义我们消息的特定处理方式:
class CoordLogger : public Reader<Message> {
using Reader<Message>::Reader;
protected:
void Callback(const Message& data) override {
std::cout << "Received coordinate " << data << std::endl;
}
};
DoWrites代码基本保持不变;唯一的变化是我们使用不同的常量来标识我们的队列:
void DoWrites() {
std::vector<Message> messages {{1, 0}, {0, 1}, {1, 1}, {0, 0}};
Writer<Message> writer(kQueueName);
for (const auto& m : messages) {
std::cout << "Write " << m << std::endl;
writer.Write(m);
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
}
- 由于消息处理逻辑已经移动到
Reader和CoordLogger类中,DoReads现在就像这样简单:
void DoReads() {
CoordLogger logger(kQueueName);
logger.Run();
}
- 更新后的
main函数如下:
int main(int argc, char** argv) {
MessageQueue q(kQueueName, O_WRONLY, 10, sizeof(Message));
pid_t pid = fork();
if (pid) {
DoWrites();
std::this_thread::sleep_for(std::chrono::milliseconds(100));
kill(pid, SIGTERM);
} else {
DoReads();
}
}
- 最后,我们的应用程序需要链接
rt库。我们通过在CMakeLists.txt文件中添加一行来实现这一点:
target_link_libraries(ipc3 rt)
现在可以构建和运行应用程序了。
它是如何工作的…
在我们的应用程序中,我们重用了前面一篇文章中创建的应用程序的大部分代码,探索 IPC 机制。为了实现发布-订阅模型,我们需要进行两个重要的更改:
-
使我们的 IPC 基于消息。我们应该能够自动发送和接收消息。一个发布者发送的消息不应该破坏其他发布者发送的消息,订阅者应该能够整体读取消息。
-
让订阅者定义在新消息可用时调用的回调。
为了进行基于消息的通信,我们从命名管道切换到了 POSIX 消息队列 API。消息队列 API 与命名管道的常规基于文件的 API 不同,这就是为什么我们在 Linux 标准库提供的纯 C 接口之上实现了一个 C++包装器。
包装器的主要目标是使用资源获取即初始化(RAII)习语提供安全的资源管理。我们通过定义通过调用mq_open获取队列处理程序的构造函数和使用mq_close释放它的析构函数来实现这一点。这样,当MessageQueue类的相应实例被销毁时,队列会自动关闭。
包装器类有两个构造函数。一个构造函数用于打开现有队列。它接受两个参数——队列名称和访问标志。第二个构造函数用于创建一个新队列。它接受两个额外的参数——消息长度和队列中消息的最大大小。
在我们的应用程序中,我们在main函数中创建一个队列,将10作为可以存储在队列中的消息数量。Message结构的大小是我们队列中消息的最大大小:
MessageQueue q(kQueueName, O_WRONLY, 10, sizeof(Message));
然后,DoWrites和DoReads函数打开了已经使用相同名称创建的队列。
由于我们的MessageQueue类的公共 API 类似于我们用于使用命名管道进行 IPC 的fstream接口,因此只需要对写入器和读取器进行最小的更改,使它们能够与另一种 IPC 机制一起工作。我们使用MessageQueue的实例而不是fstream作为数据成员,保持其他逻辑不变。
为了让订阅者定义他们的回调方法,我们需要修改Reader类。我们引入了Run方法,而不是读取并返回单个方法的Read方法。它循环遍历队列中所有可用的消息。对于每个被读取的方法,它调用一个回调方法:
while(true) {
queue.Receive(reinterpret_cast<char*>(&data), sizeof(data));
Callback(data);
}
我们的目标是使Reader类通用且可重用于不同类型的消息。然而,并不存在通用的回调。每个回调都是特定的,应该由Reader类的用户定义。
解决这个矛盾的一种方法是将Reader定义为抽象类。我们将Callback方法定义为virtual函数:
protected:
virtual void Callback(const T& data) = 0;
现在,由于Reader是抽象的,我们无法创建这个类的实例。我们必须继承它,并在一个名为CoordLogger的派生类中提供Callback方法的定义:
protected:
void Callback(const Message& data) override {
std::cout << "Received coordinate " << data << std::endl;
}
请注意,由于Reader构造函数接受一个参数,我们需要在继承类中定义构造函数。我们将使用 C++11 标准中添加的继承构造函数:
using Reader<Message>::Reader;
现在,有了一个能够处理Message类型消息的CoordLogger类,我们可以在我们的DoReads实现中使用它。我们只需要创建这个类的一个实例并调用它的Run方法:
CoordLogger logger(kQueueName);
logger.Run();
当我们运行应用程序时,我们会得到以下输出:

这个输出与前面的输出并没有太大的不同,但现在实现的可扩展性更强了。DoReads方法并没有针对消息做任何特定的操作。它的唯一任务是创建和运行订阅者。所有数据处理都封装在特定的类中。您可以在不改变应用程序架构的情况下添加、替换和组合发布者和订阅者。
还有更多…
POSIX 消息队列 API 提供了消息队列的基本功能,但它也有许多限制。使用一个消息队列无法向多个订阅者发送消息。您必须为每个订阅者创建一个单独的队列,否则只有一个订阅者从队列中读取消息。
有许多详细的消息队列和发布-订阅中间件可用作外部库。ZeroMQ 是一个功能强大、灵活且轻量级的传输库。这使它成为使用数据交换的发布-订阅模型构建的嵌入式应用程序的理想选择。
使用 C++ lambda 进行回调
在发布-订阅模型中,订阅者通常注册一个回调,当发布者的消息传递给订阅者时会被调用。
在前面的示例中,我们创建了一个使用继承和抽象类注册回调的机制。这不是 C++中唯一可用的机制。C++中提供的 lambda 函数,从 C++11 标准开始,可以作为替代解决方案。这消除了定义派生类所需的大量样板代码,并且在大多数情况下,允许开发人员以更清晰的方式表达他们的意图。
在这个示例中,我们将学习如何使用 C++ lambda 函数来定义回调。
如何做…
我们将使用前面示例中大部分代码,学习消息队列和发布-订阅模型。我们将修改Reader类以接受回调作为参数。通过这种修改,我们可以直接使用Reader,而不需要依赖继承来定义回调:
-
将我们在前面示例中创建的
ipc3目录的内容复制到一个新目录ipc4中。 -
保持所有代码不变,除了
Reader类。让我们用以下代码片段替换它:
template<class T>
class Reader {
private:
MessageQueue queue;
void (*func)(const T&);
public:
Reader(std::string& name, void (*func)(const T&)):
queue(name, O_RDONLY), func(func) {}
void Run() {
T data;
while(true) {
queue.Receive(reinterpret_cast<char*>(&data),
sizeof(data));
func(data);
}
}
};
- 现在我们的
Reader类已经改变,我们可以更新DoReads方法。我们可以使用 lambda 函数来定义一个回调处理程序,并将其传递给Reader的构造函数:
void DoReads() {
Reader<Message> logger(kQueueName, [](const Message& data) {
std::cout << "Received coordinate " << data << std::endl;
});
logger.Run();
}
-
CoordLogger类不再需要,因此我们可以完全从我们的代码中安全地删除它。 -
您可以构建和运行应用程序。
它是如何工作的…
在这个示例中,我们修改了之前定义的Reader类,以接受其构造函数中的额外参数。这个参数有一个特定的数据类型——一个指向函数的指针,它将被用作回调:
Reader(std::string& name, void (*func)(const T&)):
处理程序存储在数据字段中以供将来使用:
void (*func)(const T&);
现在,每当Run方法读取消息时,它会调用存储在func字段中的函数,而不是我们需要重写的Callback方法:
queue.Receive(reinterpret_cast<char*>(&data), sizeof(data));
func(data);
将Callback函数去掉使Reader成为一个具体的类,我们可以直接创建它的实例。然而,现在我们需要在它的构造函数中提供一个处理程序作为参数。
使用纯 C,我们必须定义一个named函数并将其名称作为参数传递。在 C++中,这种方法也是可能的,但 C++还提供了匿名函数或 lambda 函数的机制,可以直接在现场定义。
在DoReads方法中,我们创建一个 lambda 函数,并直接将其传递给Reader的构造函数:
Reader<Message> logger(kQueueName, [](const Message& data) {
std::cout << "Received coordinate " << data << std::endl;
});
构建和运行应用程序会产生以下输出:

正如我们所看到的,它与我们在前面的示例中创建的应用程序的输出相同。然而,我们用更少的代码以更可读的方式实现了它。
Lambda 函数应该明智地使用。如果保持最小,它们会使代码更易读。如果一个函数变得比五行更长,请考虑使用命名函数。
还有更多…
C++提供了灵活的机制来处理类似函数的对象,并将它们与参数绑定在一起。这些机制被广泛用于转发调用和构建函数适配器。en.cppreference.com/w/cpp/utility/functional上的函数对象页面是深入了解这些主题的好起点。
探索数据序列化
我们已经在第三章 使用不同的架构中简要涉及了序列化的一些方面。在数据交换方面,序列化是至关重要的。序列化的任务是以一种可以被接收应用程序明确读取的方式表示发送应用程序发送的所有数据。鉴于发送方和接收方可能在不同的硬件平台上运行,并通过各种传输链路连接 - 传输控制协议/互联网协议(TCP/IP)网络,串行外围接口(SPI)总线或串行链路,这个任务并不那么简单。
根据要求实现序列化的方式有很多种,这就是为什么 C++标准库没有提供序列化的原因。
在这个示例中,我们将学习如何在 C++应用程序中实现简单的通用序列化和反序列化。
如何做…
序列化的目标是以一种可以在另一个系统或另一个应用程序中正确解码的方式对任何数据进行编码。开发人员通常面临的典型障碍如下:
-
平台特定的差异,如数据对齐和字节顺序。
-
内存中分散的数据;例如,链表的元素可能相距甚远。由指针连接的断开块的表示对于内存是自然的,但在传输到另一个进程时,无法自动转换为字节序列。
解决这个问题的通用方法是让一个类定义将其内容转换为序列化形式并从序列化形式中恢复类实例的函数。
在我们的应用程序中,我们将重载输出流的operator<<和输入流的operator>>,分别用于序列化和反序列化数据:
-
在您的
~/test工作目录中,创建一个名为stream的子目录。 -
使用您喜欢的文本编辑器在
stream子目录中创建一个stream.cpp文件。 -
从定义要序列化的数据结构开始:
#include <iostream>
#include <sstream>
#include <list>
struct Point {
int x, y;
};
struct Paths {
Point source;
std::list<Point> destinations;
};
- 接下来,我们重载
<<和>>运算符,负责将Point对象分别写入和从流中读取。对于Point数据类型,输入以下内容:
std::ostream& operator<<(std::ostream& o, const Point& p) {
o << p.x << " " << p.y << " ";
return o;
}
std::istream& operator>>(std::istream& is, Point& p) {
is >> p.x;
is >> p.y;
return is;
}
- 它们后面是
Paths对象的<<和>>重载运算符:
std::ostream& operator<<(std::ostream& o, const Paths& paths) {
o << paths.source << paths.destinations.size() << " ";
for (const auto& x : paths.destinations) {
o << x;
}
return o;
}
std::istream& operator>>(std::istream& is, Paths& paths) {
size_t size;
is >> paths.source;
is >> size;
for (;size;size--) {
Point tmp;
is >> tmp;
paths.destinations.push_back(tmp);
}
return is;
}
- 现在,让我们在
main函数中总结一切:
int main(int argc, char** argv) {
Paths paths = {{0, 0}, {{1, 1}, {0, 1}, {1, 0}}};
std::stringstream in;
in << paths;
std::string serialized = in.str();
std::cout << "Serialized paths into the string: ["
<< serialized << "]" << std::endl;
std::stringstream out(serialized);
Paths paths2;
out >> paths2;
std::cout << "Original: " << paths.destinations.size()
<< " destinations" << std::endl;
std::cout << "Restored: " << paths2.destinations.size()
<< " destinations" << std::endl;
return 0;
}
- 最后,创建一个包含程序构建规则的
CMakeLists.txt文件:
cmake_minimum_required(VERSION 3.5.1)
project(stream)
add_executable(stream stream.cpp)
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)
SET(CMAKE_CXX_FLAGS "--std=c++11")
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)
现在您可以构建和运行应用程序了。
它是如何工作的…
在我们的测试应用程序中,我们定义了一种数据类型,用于表示从源点到多个目标点的路径。我们故意使用了分散在内存中的分层结构,以演示如何以通用方式解决这个问题。
如果我们对性能没有特定要求,序列化的一种可能方法是以文本格式存储数据。除了它的简单性外,它还有两个主要优点:
-
文本编码自动解决了与字节顺序、对齐和整数数据类型大小相关的所有问题。
-
它可供人类阅读。开发人员可以使用序列化数据进行调试,而无需任何额外的工具。
为了使用文本表示,我们可以使用标准库提供的输入和输出流。它们已经定义了写入和读取格式化数字的函数。
Point结构被定义为两个整数值:x和y。我们重写了这种数据类型的operator<<,以便写入x和y值,后面跟着空格。这样,我们可以在重写的operator>>操作中按顺序读取它们。
Path数据类型有点棘手。它包含一个目的地的链表。由于列表的大小可能会变化,我们需要在序列化其内容之前写入列表的实际大小,以便在反序列化期间能够正确恢复它:
o << paths.source << paths.destinations.size() << " ";
由于我们已经重写了Point方法的<<和>>操作符,我们可以在Paths方法中使用它们。这样,我们可以将Point对象写入流或从流中读取,而不知道它们的数据字段的内容。层次化数据结构被递归处理:
for (const auto& x : paths.destinations) {
o << x;
}
最后,我们测试我们的序列化和反序列化实现。我们创建一个Paths对象的示例实例:
Paths paths = {{0, 0}, {{1, 1}, {0, 1}, {1, 0}}};
然后,我们使用std::stringstream数据类型将其内容序列化为字符串:
std::stringstream in;
in << paths;
std::string serialized = in.str();
接下来,我们创建一个空的Path对象,并将字符串的内容反序列化到其中:
Paths paths2;
out >> paths2;
最后,我们检查它们是否匹配。当我们运行应用程序时,我们可以使用以下输出来进行检查:

恢复对象的destinations列表的大小与原始对象的destinations列表的大小相匹配。我们还可以看到序列化数据的内容。
这个示例展示了如何为任何数据类型构建自定义序列化。可以在没有任何外部库的情况下完成。然而,在性能和内存效率要求的情况下,使用第三方序列化库将是更实用的方法。
还有更多…
从头开始实现序列化是困难的。cereal 库在uscilab.github.io/cereal/和 boost 库在www.boost.org/doc/libs/1_71_0/libs/serialization/doc/index.html提供了一个基础,可以帮助您更快速、更容易地向应用程序添加序列化。
使用 FlatBuffers 库
序列化和反序列化是一个复杂的主题。虽然临时序列化看起来简单直接,但要使其通用、易于使用和快速是困难的。幸运的是,有一些库处理了所有这些复杂性。
在这个示例中,我们将学习如何使用其中一个序列化库:FlatBuffers。它是专为嵌入式编程设计的,使序列化和反序列化内存高效且快速。
FlatBuffers 使用接口定义语言(IDL)来定义数据模式。该模式描述了我们需要序列化的数据结构的所有字段。当设计模式时,我们使用一个名为flatc的特殊工具来为特定的编程语言生成代码,这在我们的情况下是 C++。
生成的代码以序列化形式存储所有数据,并为开发人员提供所谓的getter和setter方法来访问数据字段。getter 在使用时执行反序列化。将数据存储在序列化形式中使得 FlatBuffers 真正的内存高效。不需要额外的内存来存储序列化数据,并且在大多数情况下,反序列化的开销很低。
在这个示例中,我们将学习如何在我们的应用程序中开始使用 FlatBuffers 进行数据序列化。
如何做…
FlatBuffers 是一组工具和库。在使用之前,我们需要下载并构建它:
-
下载最新的 FlatBuffers 存档,可在
codeload.github.com/google/flatbuffers/zip/master下载,并将其提取到test目录中。这将创建一个名为flatbuffers-master的新目录。 -
切换到构建控制台,将目录更改为
flatbuffers-master,并运行以下命令来构建和安装库和工具。确保以 root 用户身份运行。如果没有,请按Ctrl + C退出用户 shell:
# cmake .
# make
# make install
现在,我们准备在我们的应用程序中使用 FlatBuffers。让我们重用我们在以前的配方中创建的应用程序:
-
将
ipc4目录的内容复制到新创建的名为flat的目录中。 -
创建一个名为
message.fbs的文件,打开它并输入以下代码:
struct Message {
x: int;
y: int;
}
- 从
message.fbs生成 C++源代码,运行以下命令:
$ flatc --cpp message.fbs
这将创建一个名为message_generated.h的新文件。
- 在编辑器中打开
ipc1.cpp。在mqueue.h包含之后,添加一个include指令用于生成的message_generated.h文件:
#include <mqueue.h>
#include "message_generated.h"
-
现在,摆脱我们代码中声明的
Message结构。我们将使用 FlatBuffers 模式文件中生成的结构。 -
由于 FlatBuffers 使用 getter 方法而不是直接访问结构字段,我们需要修改我们重新定义的
operator<<操作的主体,用于将点数据打印到控制台。更改很小——我们只是为每个数据字段添加括号:
std::ostream& operator<<(std::ostream& o, const Message& m) {
o << "(x=" << m.x() << ", y=" << m.y() << ")";
}
- 代码修改已完成。现在,我们需要更新构建规则以链接 FlatBuffers 库。打开
CMakeLists.txt,并输入以下行:
cmake_minimum_required(VERSION 3.5.1)
project(flat)
add_executable(flat ipc1.cpp)
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)
SET(CMAKE_CXX_FLAGS_RELEASE "--std=c++11")
SET(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_RELEASE} -g -DDEBUG")
target_link_libraries(flat rt flatbuffers)
set(CMAKE_C_COMPILER /usr/bin/arm-linux-gnueabi-gcc)
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabi-g++)
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY)
- 切换到构建控制台,然后切换到用户 shell:
# su - user
$
- 构建并运行应用程序。
工作原理…
FlatBuffers 是一个外部库,不在 Ubuntu 软件包存储库中,因此我们需要先下载、构建和安装它。安装完成后,我们可以在我们的应用程序中使用它。
我们使用了我们为使用 C++ lambda 进行回调配方创建的现有应用程序作为起点。在该应用程序中,我们定义了一个名为Message的结构,用于表示我们用于 IPC 的数据类型。我们将用 FlatBuffers 提供的新数据类型替换它。这种新数据类型将为我们执行所有必要的序列化和反序列化。
我们完全从我们的代码中删除了Message结构的定义。相反,我们生成了一个名为message_generated.h的新头文件。这个文件是从message.fbs的 FlatBuffers 模式文件生成的。这个模式文件定义了一个具有两个整数字段x和y的结构:
x: int;
y: int;
这个定义与我们之前的定义相同;唯一的区别是语法——FlatBuffers 的模式使用冒号将字段名与字段类型分隔开。
一旦message_generated.h由flatc命令调用创建,我们就可以在我们的代码中使用它。我们添加适当的include如下:
#include "message_generated.h"
生成的消息与我们之前使用的消息结构相同,但正如我们之前讨论的,FlatBuffers 以序列化形式存储数据,并且需要在运行时对其进行反序列化。这就是为什么,我们不直接访问数据字段,而是使用x()访问器方法而不是只是x,以及y()访问器方法而不只是y。
我们唯一使用直接访问消息数据字段的地方是在重写的operator<<操作中。我们添加括号将直接字段访问转换为调用 FlatBuffers 的 getter 方法:
o << "(x=" << m.x() << ", y=" << m.y() << ")";
让我们构建并运行应用程序。我们将看到以下输出:

输出与我们自定义消息数据类型的输出相同。在我们的代码中只进行了少量修改,我们就将我们的消息迁移到了 FlatBuffers。现在,我们可以在多台计算机上运行我们的发布者和订阅者——这些计算机可以具有不同的架构,并确保它们每个都正确解释消息。
还有更多…
除了 FlatBuffers 之外,还有许多其他序列化库和技术,每种都有其优缺点。请参考C++序列化 FAQ以更好地了解如何在您的应用程序中设计序列化。
8966

被折叠的 条评论
为什么被折叠?



