Algolia 博客中文翻译(一)

原文:Algolia Blog

协议:CC BY-NC-SA 4.0

由我们的开发人员构建的 10 大搜索生产力工具

原文:https://www.algolia.com/blog/engineering/10-great-productivity-tools-built-by-our-developers/

开发人员开发生产力工具不仅仅是他们工作的一部分,也是出于对游戏的热爱。游戏是减少他们(和他们的同事)必须做的任务数量,为构建优秀应用程序的更高要求扫清道路。他们在这些伟大的生产力工具背后的创造力来自于对重复性任务的本能厌恶。

比如说…

一位开发人员朋友最近向我坦白,她有时会很懒。“ 可耻地 懒惰,”她说。“而且我并不孤单。我以懒惰为职业。”

我不知道该如何回应。这是一个非常成功的技术奇才——一个技术论坛和活动的大师,在 Twitter 和 Github 上有大量的追随者——她告诉我她很懒。

“我有时会获得这种强大的能量,我可以移动高楼并创建很酷的程序,为我完成 繁琐的编程任务 。这样我就可以花更多的时间做我的实际工作——用耳机创建让世界其他地方的生活更轻松的应用程序。”

我开始明白了。“这种强大的 懒惰的 能量多久出现一次?”

“每天。我每天都写代码,为我执行一些小任务。我从不厌倦提出新的想法,并夜以继日地将它们变成现实。”

由此可见,开发者的心态。

在 Algolia,几乎每周都有一个团队成员带着一个让所有人惊叹的“业余”项目出现,并立即作为一个(有时是 开源)生产力工具 进入我们的日常生活。

他们告诉我们这很容易做到。我猜他们只是需要那一瞬间进入职业生涯 懒惰… 我的意思是,生产力。

他们为 windows、apple 和 android 开发桌面、web 和移动应用程序。他们的应用程序管理待办事项和工作流,改善任务管理。他们的代码利用 Slack、Google Chrome 扩展和社交媒体来发送通知、创建协作工具和自动化文档贡献。这样的例子不胜枚举。

但是让我们让他们告诉你这件事。这里是他们写的 10 篇博客,描述了他们最好的生产力工具和很酷的应用程序。

生产力应用和工具

我们在世界不同的地方有很多办公室,这意味着不同的时区,所以很容易感到失落,与彼此的日常生活脱节。我们想创造一些东西来“欺骗”距离,让人们感觉他们更像是属于一个公司。这个想法是利用我们办公室的电视屏幕来发布人们的生日、招聘纪念日、新员工、活动和聚会、候选人现场面试和职位空缺——集中展示公司一周的亮点。现在每个办公室都安装了屏幕!

通过 Slack 或电子邮件发送敏感信息是一种非常常见的做法,也是一个非常糟糕的想法。面临的挑战是创建一个更安全且易于使用的平台,以吸引更多人采用。在同事的帮助下,我造了一个自毁信使。

我想尽可能地自动化内部包裹交付流程,从扫描标签到通知员工延期交货。将 Algolia 的搜索引擎与 Google Vision 的 OCR API 相集成,我找到了一种更快、更简单、更可扩展的方式来帮助我们的办公室经理向不断增长的员工分发包裹。

生产力插件

我们决定构建一个 Algolia Netlify 插件 来自动索引搜索。我们的主要目标是在每次部署后触发我们的爬虫浏览网站,以构建一个随时可用的 Algolia 索引。其结果是一个 Netlify 插件,使得在您的 Netlify 网站上添加搜索变得容易,允许您只需几行代码就可以添加 Algolia 搜索体验。

自动化一切的愿望相当普遍,尤其是对开发人员而言:我为什么要浪费时间无数次地做同样的操作?这种愿望是 Atom 插件开发过程的基础:一种自动完成的搜索,只需敲几下键盘,就能快速从 NPM 导入包。

我和我的同事在想:Algolia 有一个 。NET API 客户端 和 Unity 支持 C#作为脚本语言——为什么不试着把它们结合在一起呢?我们的想法是在一个 Unity 游戏场景中实现“随你搜”的体验。我们决定创建一个市场,一个在游戏中搜索的常见用例。

CMS 通常没有搜索功能。自己在上面构建一个最简单的搜索功能都不容易,更不用说包含诸如允许输入错误和分面等重要功能的东西了。这就是我们的 Algolia 插件所做的事情:它在你的 CMS 上添加了一个灵活且功能丰富的搜索功能。

语音技术

我想用我的声音与世界互动。而且,我很想停止打字。我们创建了 Algolia Alexa 技能套件适配器, 一个小型 JavaScript 库,打算在Amazon Lambda上使用,它提供了集成 Alexa 和 Algolia 的工具,以及构建 Alexa 技能的框架。

如果没有搜索框,搜索界面会是什么样子?经过几周的探索,我创建了一个通过对话给出音乐建议的应用程序。我称之为“音乐学家”。这是我如何构建它的故事,希望给你一个想法,什么样的新搜索界面即将出现,以及你如何开始自己构建它们。

最后一点…

3 月 31 日,正好是愚人节,我们 宣布 我们的 CSS API 客户端 ,即复制了一个只有 CSS 的搜索引擎。虽然这只是愚人节的一个玩笑,但制作起来很有趣,在野外看到它也很有趣。警告:请不要在家或在生产中尝试这个!

开发者应该关注的 10 个影响者—

原文:https://www.algolia.com/blog/algolia/10-influencers-that-developers-should-be-following/

对个人和企业来说,时代都很艰难,所以每个人都在寻找灵感和新想法。这就是为什么我们收集了一份我们最喜欢的十位开发人员的名单,以帮助您了解新技术并最大限度地利用您当前的投资。无论你是刚毕业的学生还是经验丰富的专业人士,我们建议你花点时间浏览一下我们最喜欢的十个账户,看看谁可能会从你的每日订阅中消失。

  1. 杰森·伦斯托夫|@ jlengstorf 节目的主持人杰森·伦斯托夫每周两次,杰森带来一位专家嘉宾,在 90 分钟内就一项新技术、技能或概念进行现场讨论。通过观看他的节目,你可以了解一些关于开发人员社区的新东西,从开发人员社区,它总是远远超出了关于编程的简单讨论。关注他的 Twitter 帐户,了解最新的剧集,并查看 Jason 还有哪些热门故事可以分享!
  2. 侯赛因纳赛尔|@ hnasr
    侯赛因喜欢在他的推特账户上讨论开发的后端,在他的 YouTube 频道播客上也是如此!这是一个你应该跟随的开发人员,以真正深入软件工程的本质要素,无论你处于什么专业水平,都有大量的教育视频来帮助你继续开发。
  3. open processing|@ open processingOpenProcessing 是一个平台,编码人员可以聚集在一起探索生成艺术,进行教学并与其他人合作,并在一个无障碍的环境中根据自己的草图编码。这是一个很好的地方来看看这些艺术编码是怎么回事!
  4. 莎拉·达扬 | @frontstuff_io
    当然,我们很高兴地说,一些业内顶尖人才就在阿尔戈利亚工作!Sarah Dayan 是我们的软件工程师之一,专门负责构建开源前端库。无论她谈论的是开发者体验卓越还是电子商务创新,她的推文一定会让你满意。关注 Sarah,了解她正在从事的工作或她演讲的行业活动的最新动态——从 Jamstack London 到 DevCon 2022
  5. Kent c . Dodds|@ kentcdodds
    Kent c . Dodds 是一位教育家,特别关注前端软件开发。在他的网站上,你会发现他写的博客、他主持的远程研讨会、聊天和电话录音,以及报名参加帮助你提升开发水平的课程的机会。Kent 给出了关于软件开发的非常实用的建议,所以一定要关注他!
  6. 卡西迪·威廉姆斯|@卡西杜
    如果你喜欢你的开发者上下文中穿插着迷因,那就一定要把这位软件工程师加到你关注的账户中!卡西迪是首席技术官、创业顾问和投资人,也是开发者体验专家。她的账户会让你了解你应该关注的新公司的最新动态,她的新闻简报会让你了解网络开发的最新动态,还有一些有趣的帖子和迷因来点亮你的一天。
  7. Gergely Orosz|@ GergelyOrosz
    实用主义工程师时事通讯博客的作者,Gergely 是一个关注世界发展动态的人。凭借其多年的行业经验,Gergely 从自己的工作以及该领域的其他专家那里获得了宝贵的观点和深刻的见解。
  8. hacker noon|@ hacker noon
    不只是针对黑客!HackerNoon 是一个面向众多技术专家的博客,他们可以发布故事,分享他们在行业不同领域的专业知识,包括编码和网站开发。通过这个帐户,你会学到很多不同领域的技术。
  9. DEV 社区|@ the practical DEV
    软件开发人员聚集在 DEV 这样的论坛上,因为这是一个通过合作产生最佳创新的行业。跟随 DEV 帐户与该领域的其他专业人士建立联系,并为您的下一个项目寻找灵感!
  10. Sara Soueidan|@ SaraSoueidan
    最后,我们强烈推荐关注 Sara,她是一位经验丰富的设计工程师,致力于创造包容性的体验,并教导他人如何对可访问性进行深思熟虑和深思熟虑。Sara 的 Twitter feed 将让你第一个知道她在做什么,以及她对发展领域的一些最新趋势和主题的看法。

想要更多开发者资源?只需看看我们的 博客资源中心 就可以获得关于开发者和面向开发者的各种主题的文章、案例研究和视频!当然,一定要在 Twitter 上关注我们(@ algolia)。

我们的 Algolia 搜索和发现播放列表中的 10 首歌曲

原文:https://www.algolia.com/blog/algolia/10-songs-on-our-algolia-search-and-discovery-playlist/

自 2012 年以来,发生了很多事情。首先,尽管玛雅预言,世界并没有结束。恰恰相反,一个全新的搜索和发现世界诞生了。没错,Algolia 成立于 2012 年,也就是说今年是我们第十个 第 周年纪念日!

那么,我们该如何庆祝呢?我们可以像一个普通的 10 岁小孩一样,要一匹小马或一台 Xbox(实际上是 Algolia 的客户!).但那不是我们的速度。相反,我们以 10 个主题的博客系列回顾过去并展望未来,这些主题包括从预测到里程碑到播放列表等等。

先上?为了纪念 Algolia 十岁生日,我们以十首我们最喜爱的歌曲开始,致力于搜索、寻找、发现、寻找和发现事物,同时为您提供我们在这十年中开发的一些产品和服务的虚拟之旅。所以,坐下来,享受一些好的节拍和一些更好的阿尔戈利亚壮举。

** 《寻找》——玛丽·J·布里吉、罗伊·艾尔斯

以一首经典老歌的混音开始播放列表!当显而易见的答案就在你面前时,你有多频繁地在网上搜索、搜索、搜索?我们创立 Algolia 是为了完成一个简单的 使命 :创造快速、相关、个性化的搜索和发现体验。客户不应该在一个商业网站上感到失落或沮丧——尤其是当我们能够实现一个几乎能读懂你的想法的 API 解决方案的时候!

** 《发现你》——杰西·麦卡尼

当你发现杰西·麦卡尼最新的果酱时,你也可以 发现 我们提供的一些产品,这些产品已被证明可以提高 UX,促进参与,增加收入,并在你的网站上推动更好的发现。

** 《探索者》——多莉·帕顿

多莉总是说得最好。我们不都是网上的寻求者吗?无论你是在寻找一个特定的产品,还是花费你的朝九晚五时间寻找更多关于如何创建强大的搜索和发现体验的一般知识,我们都提供了大量的 培训 来帮助你开始。

  • “我一直在寻找的”——沙佩&瑞恩

我们什么时候找到了我们一直在寻找的东西?当我们 收购了 Search.io 及其矢量搜索引擎!我们现在支持市场上第一个也是唯一一个 API 优先的平台,该平台结合了关键字、语义和图像搜索,以闪电般的速度、定制的高度相关的结果真正革新了搜索体验。

** 《寻找爱情》——阿肯

有时搜索会提供你真正想要的东西,但不是你想要的。就像“爱”很难描述,但是当你看到它的时候你就知道了。类似地,语义搜索超越了文字描述,提供了你想要的东西。Search.io 的 Neuralsearch 正在帮助我们 将语义搜索 带到新的高度。

** “我还是没有找到我要找的”——U2

当你搜索了两个小时,购物车还是空的,这种感觉——但这不会发生在使用 Algolia 的网站上。我们的解决方案能够克服用户经常面临的搜索结果泛滥的一种方式是通过我们的 动态重新排序 ,这提高了最佳搜索结果。我们还能以极快的速度处理物品,因此您不会被晾在一边。

** “为什么爱情这么难找?”–杰西·麦卡尼

这是杰西的世界,我们只是生活在其中。说到难找,你知道吗,近 60%的在线搜索都是在移动设备上进行的。你可能没有看到电子商务增长的一个原因是,你没有像桌面网站一样投资于移动搜索体验——这是现代景观中的一个大疏忽,可能会使消费者很难找到他们需要的东西!别担心,Algolia 同时优化了移动和网络搜索。

  • 《直到我找到你》——斯蒂芬·桑切斯

你可能会迷失在黑暗中,直到你找到一个真正提升你的 UX 的搜索和发现工具,并为你的组织的整体发展铺平道路!如果你不相信我们, 从我们的客户和用例中获取灵感

** 《搜索并摧毁》——弗洛伦丝以及机器乐队

我们更多地从事搜索和发现业务,但我们也非常喜欢这张朋克摇滚经典的封面!无论您在寻找什么,我们都拥有应对各种挑战的专业知识,涵盖 行业和解决方案 。准备好摧毁竞争了吗?

** 《最伟大的发现》——埃尔顿·约翰

你有过的最伟大的发现是什么?在 Algolia,我们为成为这一领域的开拓者而自豪,但我们也一直为发现优秀人才和建立文化第一的公司而自豪。我们关心与我们一起工作的人,我们为其提供解决方案的客户,以及我们对社会的积极影响。虽然我们优先考虑技术进步,但同样重要的是确保作为一家公司,我们 回馈 并支持我们的员工和周围社区。

作为我们领先的 API 优先搜索和发现平台背后的人,Algolians 是一切搜索和发现的忠实粉丝。但是,我们也是音乐迷!这很自然地引导我们去寻找所有与搜索和发现相关的音乐,所以你不需要这么做!😉调进播放列表 这里

当然,如果你想进一步了解我们的产品、服务或音乐品味,你可以联系我们的专家团队!********

显示 Algolia 为何在搜索领域处于领先地位的 10 个统计数据

原文:https://www.algolia.com/blog/algolia/10-stats-that-show-why-algolia-is-the-leader-in-search/

电子商务网站可以拥有 数百万 的 SKU。 这是好事!这意味着零售商和市场努力为每个人提供一些东西。但是,您的零售公司如何确保客户能够轻松找到他们想要的产品,并让您的在线体验脱颖而出呢?

帮助应对这一挑战是我们的超能力。从一开始,我们就是市场领先的 API 优先的搜索和发现平台。我们努力让客户更容易解决问题,虽然这听起来有些天真,但我们相信我们已经在化繁为简的艺术上取得了巨大的进步。当然,当你和其他人一起评估 Algolia 时,你需要的不仅仅是我的观点来说服你的团队哪个解决方案是最好的。【剧透:数字说明一切】。

让我们直奔主题吧。以下十个统计数据显示了为什么 Algolia 在搜索和发现领域处于领先地位:

  1. 382%的投资回报率——弗雷斯特研究公司 , 一家独立客观的研究型咨询集团,享有相当可观的声誉,在这份 总体经济影响报告 中,计算出 382%为 Algolia 的平台能够提供的平均投资回报率。
  2. **每秒 5 万次搜索请求—**Algolia 平台每秒支持 5 万次搜索,相当于每周 300 亿次搜索请求,每年 1.75 万亿次。即使在黑色星期五和网络星期一也不会出汗。如果你一直在追踪,这比微软必应、雅虎、百度、Yandex 和 DuckDuckGo 加起来还多四倍! 阿果搜索 为赢。
  3. **相关性提高 40%到 50%—**我们的算法驱动结果。我们喜欢让想要的物品浮出水面。Algolia 的 排名算法 提高了搜索结果的相关性,实测增幅为 40%至 50%,尤其是移动客户。
  4. 160 万美元的存款-被这些数字搞糊涂了?准备掉脑袋吧。数据显示,零售商明白搜索和 无头架构 的价值。零售商未来在搜索技术上的投资需要集中在与无头架构兼容的解决方案上。Algolia 的平台实现了向可组合或 无头架构 的过渡,并简化了数字体验开发,为我们的 17,000 名客户平均节省了 160 万美元(更多信息请见下文!).里程会有所不同,但我们相信您会看到不同。以至于我们有了一个 自由无栅级
  5. 从近一年到 6 个月(或更短)的上线**–**我们给你时间回去关注重要的事情。有了 Algolia,通常需要近一年时间的大型开发项目现在可以在不到 6 个月的时间内完成。通过自动化节省的时间解放了采购员,使他们能够从事其他活动来推动销售——一家零售商指出,他们将人工干预从五天减少到了一天。想象一下,当您可以在几周内开始交付重要的转化时,您可以获得的收入,而不是使用您当前的平台需要几个月。在当今的经济形势下,每一天都很重要!
  6. **$ 120 万美元的收入增长—**金钱万能,我们倾听。通过使用 Algolia 的推荐,一个由 客户 组成的复合组能够推动 120 万美元的收入增长。这就是 Forrester 的全部内容,现在,我想你必须阅读 的完整报告。
  7. 1-20 毫秒**–**大多数 Algolia 搜索查询需要 1-20 毫秒。这比我们的竞争对手快 200 倍。所以…可以肯定地说,我们的 API 优先平台支持极快的速度。这是至关重要的,因为 80%的消费者认为速度是积极的客户体验的重要因素(谷歌也根据这个速度对你的网站进行排名)。
  8. 55%的零售商**–**假日购物季刚刚过去, 55%的零售商 认识到更有效的竞争能力是投资搜索的首要原因之一。重要的是,这些公司在下一个假期之前意识到这一点,并确定 转化客户的新方式 。尤其是像 专家 项目认为通货膨胀将进一步抑制支出。
  9. **零售同行评审—Gartner Group 发布了一份同行洞察报告,梳理了 Algolia 在零售领域的所有特性和功能。与同行相比,Algolia 在可扩展性、集成和定制方面排名最高。一家价值 5 亿美元的零售公司 1B 评论说 Algolia 有大量关于部署&集成的文档。因此,基本实现是一个简单的过程。更复杂/更高级的实施阶段&集成有很大的主观性——尽管 Algolia 团队在所有阶段都很有帮助,但更详细的文档会更有用。查看完整报告
    *** 17,000 多名客户
    统计数据说明了一切,但也许没有比我们的客户更多的了。从电子商务到 SaaS,从政府到媒体,各行各业超过 17000 家大大小小的企业已经在 Algolia 安家。 他们的故事 显示了巨大的独创性和创新的动力,这使他们来到了阿尔戈利亚。我们已经为他们建立了 search&discovery——也许有一天你也会有

**搜索和发现不仅仅是一个提供一页搜索结果的搜索框。这是关于提供即时满足感,并帮助消费者在发现新的和相关的东西时找到快乐。它是关于在很短的时间内从任何互动中产生最大的收益。这是为了减少摩擦。当你在几毫秒内展示了一个人正在寻找的东西,你就创造了满足感。这转化为他们对你的品牌的期望和信任。

十年前,当 Algolia 成立时,有一个简单但富有挑战性的愿景:创造极快、即时且相关的搜索和发现体验。

想了解更多有关搜索&发现如何让您的组织受益的信息吗?碰上一些神奇的阿洛利亚专家为 现场演示 。**

关于安全性的 10 个问题

原文:https://www.algolia.com/blog/product/10-things-to-ask-your-search-provider-about-security/

早在 20 世纪 80 年代,美国的旅游者播放了 行李箱广告 大猩猩在行李箱中折腾,以展示他们的产品有多结实。产品设计师在面对严重的猴子(实际上是猿……)业务时,在确保弹性方面做得相当好。我喜欢这个比喻,因为它对于软件来说没有太大的不同。类似地,工程师设计的 SaaS 应用程序可以处理各种滥用——暴力攻击、数据泄露、网络钓鱼等等。

安全性是指保护数据、公司知识产权、品牌声誉等。在全球范围内,一次数据泄露的平均成本为435 万美元。许多软件购买者没有知识、资源或洞察力来了解什么是安全最佳实践,因此安全问题通常只在购买周期的末尾出现。我们认为,从一开始就考虑购买任何软件都要考虑安全性,这是一个好方法。

如果你正在评估搜索提供商(或任何 SaaS 产品),这里有 10 个问题,你可能想从了解他们的安全实践开始。

1。你在设计搜索软件时会做哪些考虑?

安全需要成为发展规划过程的一部分,而不是事后的想法。我们很幸运有一个专门的安全团队,与我们的工程师和产品经理一起审查产品架构和相关的基础设施。该团队的工作是确保从各种可能的来源和数据中心流入产品的数据(产品目录、面向支持的解决方案、内部分析、转换事件)使用现代加密技术和最高合规标准进行安全传输和存储。我们还努力保持透明度。例如,自 2017 年以来,我们与 云安全联盟 合作,不断对我们的团队进行最高安全标准的培训和认证,并与trust arc合作,以确保数据隐私。安全性需要从第一天就设计到软件中。

2。我的数据存储在哪里(以及如何存储)?

数据存储在本地还是云中?谁在监视您的数据,它是如何得到保护的?Algolia 是一家 100%托管解决方案提供商。我们在全球各大洲的 70 多个数据中心的裸机服务器上托管数据。客户可以选择在完全由微软 Azure 或 AWS 管理的 EU-或美国数据中心运行 Algolia。数据在传输过程中会被加密(AES-256),客户还可以选择使用每台服务器管理的密钥和Algolia Vault对其“静态”数据进行加密。我们的数据中心受到持续的监控、管理和测试:

  • 我们仅将它们保存在 PCI-DSS、ISO27001 和/或 SOC2 认证的数据中心
  • 我们用几种漏洞扫描工具持续测试它们
  • 可靠、独立的第三方每年对它们进行两次笔测试
  • 我们有一个永久的 bug 赏金 程序运行
  • 所有日志被发送到一个 SIEM 解决方案进行扫描和即时报告
  • 所有服务器都运行着由专业 SOC 团队监管的 EDR
  • 我们正在开发新的工具来监视他们,有一个专门的团队
  • 我们正在审查每一项新功能,以确保它不会产生新的弱点

3。你的软件符合标准吗?

所有公司都必须遵守国际和/或当地法律。或者,他们的客户只愿意与服务符合严格标准的供应商合作。我们有 17,000 多个客户,来自政府、公司、医疗企业等,他们都有严格的要求,我们特意设计了我们的服务,以便在许多公共和私人使用案例中工作。今天,阿尔戈利亚遵从…

  • ISO27001
  • ISO27017
  • BSI C5
  • HIPAA
  • GDPR
  • CPRA
  • SOC 2 类型 2
  • SOC 3

4。数据是如何管理的?

你的数据就是你的。因此,您将希望与提供商合作,他们会极其小心地管理您的数据,使其不会丢失或泄露。我们的服务不会跟踪您的客户,他们的身份仍在您的控制之下。我们有一个安全的多租户架构,全天候监控,以防止客户之间的数据泄露,并持续监控 API 访问。我们设计的 高可用服务 具有冗余和备份,这使我们能够提供 99.99%(以及更高)的可靠性。

5。如果出现数据泄露会发生什么?

与您交谈的提供商是否为最坏的情况做好了准备,如果是,如何做?当然,我们会尽一切努力确保这种情况不会发生,包括对我们的服务进行半年一次的独立渗透测试。但是,如果发生这种情况,我们将迅速确定原因,了解哪些数据(如果有)已经受损,在 24 小时内联系受影响的客户,并尽快解决问题。

6。你提供什么保证?

服务中断可能有多种原因——云提供商中断、客户超出自己的使用量、当地 ISP 问题等。云供应商如何保证他们的服务可以千差万别。但是,如果问题与 Algolia 有关,我们的 Algolia 服务水平协议(SLA) 涵盖标准和高级计划,并保证报酬。如果我们未能达到我们为自己设定的标准,客户有资格获得积分。

7。发现产品漏洞后会发生什么?

企业级软件由数以千计的组件构建而成——开源的和专有的——通常带有不同功能的微服务。如此复杂系统的编排并非没有风险;随着新漏洞的发现,很多事情都可能出错。我们尽了很大努力来获得最好的安全性。例如,在一个 OpenSSL HeartBleed 漏洞 被披露后,我们只用了几个小时就修复了它。我们正在执行定期的独立渗透测试,并在 HackerOne 上有一个 公共漏洞奖励计划 ,帮助我们确保持续的安全性。

8。如果您决定终止订阅,您的公司数据会发生什么变化?

随着您需求的变化,您可能需要更换提供商。当你离开时,你的数据会发生什么变化?当然,我们会尽一切努力留住您,但我们知道这并不总是可能的。在 Algolia,我们根据订阅协议保留信息。我们也可以根据需要在合理的时间内保留和使用某些个人信息,以追求我们的合法商业利益、进行审计、履行我们的法律义务、解决争议等等。在我们的 隐私政策 中,你会发现所有这些都清楚明了。

9。谁有权访问数据和系统?

了解谁在进出以及数据何时在传输中非常重要。安全是 Algolia 和我们客户的共同责任。一方面,我们尽我们所能锁定访问,另一方面,我们要求我们的客户负责任地管理访问。例如,我们控制对基础设施的访问,并提供安全 API 密钥管理、2FA 和应用程序权限级别等功能。我们还实施最新的最佳实践,以确保您的数据安全可靠,并与其他 Algolia 用户的数据相隔离。然而,我们的客户同样有责任遵循安全最佳实践,管理他们的用户的访问和权限,并保持他们的管理 API 密钥的秘密和隐藏。通过作为一个团队来管理访问,我们可以一起更加安全。客户同意的服务条款阐明了他们对管理访问和信息共享的期望。

10。您的员工如何处理安全问题?

安全不仅仅由安全团队管理。组织中的每个人都应该意识到风险和责任。当每个人都意识到可能的风险和回报时,我们可以提供更安全、更可靠的服务。在 Algolia,新员工入职后在进入任何系统之前都会接受培训,而且每个人每年都必须通过一次安全测试。我们的 IT 团队还对公司拥有的设备进行管理保护,确保设备和应用程序是最新的。我们在 Slack 中有一个共享的安全通道,可以报告事故、问题,或者只是提问;说到安全,没有愚蠢的问题!

当然,我们的安全政策还有更多的内容。最重要的是,当你调查一个提供商的安全措施时,寻找透明度。对于一个不透明的提供商来说,更有可能的是,他们混淆了一些重要的东西。

这里有一些额外的资源,可以帮助您了解更多关于 Algolia 的安全知识。

10 种方法知道它是假的人工智能搜索

原文:https://www.algolia.com/blog/ai/10-ways-to-know-its-fake-ai-search/

你认为你的搜索引擎真的是人工智能驱动的吗?嗯,也许是…也许不是。

这里有一个肮脏的行业秘密:一些公司实际上外包了这个问题。在幕后,人们手动编写规则并调整结果,使其看起来像是语义搜索。它看起来像人工智能搜索,他们称之为人工智能搜索,但它不是真正的人工智能。

真正的人工智能理解自然语言和查询背后的意图。它就像 ChatGPT,但它是根据你的数据训练的,所以它不会提供不正确或误导的结果。此外,它看起来像真正的搜索—一个结果列表和过滤器,帮助您找到您想要的东西。幕后是机器学习算法,可以自动解锁性能,改善搜索结果,并显著减少您配置搜索结果所需的工作量。毕竟,如果搜索引擎能够理解用户的意图,那么你需要做的就少多了。

那么,如何才能知道是不是真正的语义搜索呢?这就是本指南可以提供帮助的地方。我们是来区分造假者和制造者的!你知道这是假的 AI 搜索当……

1。你是 还是 添加同义词

有了人工智能搜索,你唯一需要添加同义词的时候就是那些对你的企业来说完全独特的术语。您不需要为常用词汇创建同义词。如果需要添加同义词,那是因为幕后还是关键词搜索,不是 AI。哦,请注意,对于你添加的每一个同义词,在长尾理论中有几十个你不知道的,如果你有真正的语义搜索,它们会自动工作!

2。在其他语言中不起作用

为什么你的语义搜索对英语很有效,但是你的法语、日语和德语网站表现不佳?矢量搜索技术适用于任何语言。事实上,你可以将语义搜索技术用于非结构化数据,比如图像、音频、视频,而且效果非常好。如果它在其他语言中表现不佳,它可能不是真正的语义搜索。

3。常见错别字失败

基于向量的搜索处理常见的打字错误,所以如果你的搜索引擎仍然混淆“真空”的意思是“真空”,这很可能是假的人工智能。

4。你对 还是 关键词进行优化

你是否借鉴了 1998 年左右 SEO 的关键词填充策略来确保你的站内搜索有效?那你很可能没有用 AI 搜索。语义搜索向量理解单词的意思,所以你不必执行关键字填充或其他不自然的搜索引擎行为。

5。长尾搜索很差

许多公司遵循 80/20 帕累托原则,只优化他们网站上热门查询的结果。优化底部的 80%(长尾),低频搜索太耗费时间了,对吗?嗯……如果你有真正的人工智能来提高你所有的长尾内容的站点搜索性能,那就一点都不耗时了。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

6。描述性和基于问题的搜索不起作用

当访问者搜索“买得起的礼服鞋”或“头痛药”时,你的搜索引擎可能会讨厌它像这样的搜索混淆了简单的基于关键字的搜索引擎。真正的基于人工智能的引擎自动理解这些查询以返回正确的值。

7。你在 还在 写大量的纠正规则

保证你的客户得到好的搜索结果的最好方法是写几百条自定义的纠错,或者 相关性 ,规则,对吗?例如,您可能需要添加一个规则,向搜索引擎解释“usb-c”、“usbc”和“usb c”是相同的东西。或者说“礼服衬衫”是指一件花哨的衬衫,而不是一件连衣裙。有了真正的 AI 搜索,相关性规则就成了过去式。

8。他们称之为“可解释的人工智能”

人工智能通常被称为“黑匣子”或“不透明”,因为预测算法可能令人费解。因此,如果一家公司可以告诉你他们的人工智能是如何得出一个结果的,这可能是一个警告标志。人工智能模型天生极其复杂,在推理过程中经常包括数百万甚至数十亿个数据点。通常,它们是无法解释的。如果他们声称他们是可解释的,他们需要能够通过打开黑盒来支持这种说法,并显示使用了哪个模型,以及结果是如何得出的。

9。是音盲

用真正的语义搜索,你应该能搜索到“一台不烂的电视”或者“一杯帮我解暑的茶”。在英语中,这两个术语都是常见的俚语,传达一种感觉或语气。只有关键字的搜索引擎将会完全失败,但是语义搜索引擎将会理解不同语言的许多常用短语中使用的情感。

10。即使底层数据质量很差,它仍然可以工作

正如《哈佛商业评论》 所说,“糟糕的数据质量是机器学习广泛、有利可图的使用的头号敌人。”仅仅因为语义搜索非常聪明,并不意味着它可以理解网站糟糕的结构、混乱的元数据或肮脏的格式。一个真正的人工智能搜索供应商可能需要与你合作,以确保你的网站数据是机器学习发挥其魔力的最佳选择。

准备真正的、端到端的 AI 搜索?

我们的组合关键字和人工智能支持的语义搜索解决方案即将推出。它包括端到端的人工智能,包括前端的自然语言处理(NLP),人工智能驱动的 检索,以及动态重新排名,根据您网站的数据自动重新排名结果。

不可思议的结果,明显更少的努力,没有烟雾弹。注册,有空时通知

提高电子商务转化率的 12 个技巧

原文:https://www.algolia.com/blog/ecommerce/12-tips-to-increase-ecommerce-conversion-rates/

网上零售是。然而,平均电子商务转换率仍然徘徊在 2-3% 左右,竞争比以往任何时候都更加激烈——从夫妻店直运商到资金雄厚的大型零售商——网站访问者很有可能会放弃你的商店而选择竞争对手。

你平均有 15 秒 的时间在客户离开你的电子商务网站之前留住他们。 大约 30% 的访问者会使用你的搜索栏找到他们要找的东西,其余的会浏览你的网站。

游客不能购买他们找不到的产品。你可能正好有买家想要的东西,但是他们可能拼错了或者不知道该找哪一类。或者他们只是不知道他们要找的东西的确切名称或描述。

  • 如何尽快找到合适的产品?

  • 如何针对多个品类和产品线优化用户旅程?

  • 面对成百上千的产品,您从哪里开始?

  • 在有限的资源和有限的时间内,你能完成多少?

现场搜索和发现进行转化率优化

在本指南中,我们将主要关注两件提高现场电子商务转化率的事情: 搜索发现 。当有人登陆你的网站后,这是关键的几秒钟。

通过 搜索 ,我们指的是你网站上的搜索框。当用户在查询中键入“queenmatressfitted bed sheet sale”(50%的查询 有三个或更多的关键字,并且在 之间的某个地方,10-25%的搜索 被拼错)时,他们会得到好的结果吗?

发现 指用户如何按类别或集合浏览网站。你应该先展示最畅销、最高价还是特价商品?畅销商品缺货怎么办?个性化从何而来?智能分类和排序对于访问者是转变还是反弹有很大的影响。

搜索和发现是一枚硬币的两面。支持智能搜索的技术也可以支持智能分类。

让我们来深入了解一下。

电商转化率定义

转化率简单来说就是你的网站上买东西的访问者的百分比。如果你的网站有 100 个访客,有一个人买了东西,你的转化率是 1%。

根据 BigCommerce, 跨行业平均转化率 为 1 ~ 2%,2%应该是基准线目标。

虽然本文将重点关注访问者登陆您的网站后的现场漏斗中间转化优化,但请记住,还有场外因素,如广告、季节性、竞争对手活动、广泛的消费者趋势、推荐营销等。,可以在不增加交易率的情况下增加网站的访问量。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Google Analytics via on客户旅程映射

网上买家的用户旅程

一个访问者来到你的网站。现在发生了什么?

现场搜索和发现从了解用户旅程开始,帮助您发现改善搜索和产品发现体验的机会。这里有一些方法可以让你深入了解客户的旅程:

  • 热图和游客回放

分析学

无论你是在使用谷歌分析还是其他分析工具,这都是一个很好的起点。打开 GA 中的行为下拉列表,分析您站点的以下统计:

  • 访问与站点搜索,%搜索退出,以及%搜索改进 报告:大量的站点搜索意味着用户依赖你的搜索栏来完成工作。那很好。然而,如果这三个指标都很高,这可能意味着用户找不到他们想要的东西。这是你网站搜索质量的一个危险信号。

  • 目标完成 报告 : 简单明了地告诉我们,网站搜索是否有助于推动目标完成。如果你的搜索框做得很好,让它更突出,以鼓励更多的访问者搜索。( 来源 )

  • 行为流报告 :寻找行为之间的落点和共性之类的趋势——网站访客登陆哪些页面,接下来会去哪里?你可以划分不同的用户类型(例如,新用户和老用户)来发现人们是如何访问你的网站的。

热图和访客回放工具

hot jarfull story这样的热点映射和访客回放产品可以向你展示人们如何浏览你的网站,何时放弃网站,他们如何与产品页面互动,他们在每个页面上滚动多远,以及他们点击了什么。

人们是直接去搜索栏还是点击他们看到的第一张产品图片?一次旅行不会揭示太多,但通过几十或几百次记录,你会开始看到趋势并发现需要改进的地方。

用户旅程映射

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

形象经由 苦旅

了解访客行为和决策的综合方法是构建用户旅程图。旅行地图从用户开始,而不是你的网站。定义一个人物角色(例如,两个孩子的 45 岁母亲),并从用户决定寻找产品的那一刻起一直跟踪到购买。

进行旅程规划练习的一大优势是,您的整个团队都参与进来,共同构建见解,并作为一个团队掌控旅程。作为一个团队,你会发现不足和机会,然后优先考虑和计划目标和关键交付物,以弥补任何不足。

关于旅程地图的内容足够填满多本指南。如果您有兴趣了解更多信息,请查看ShopifyQualtrics关于电子商务旅程地图的文章。

神秘顾客

神秘购物者以改善实体店运营而闻名,但他们也可以受雇进行在线商务评估。你可以雇佣在线神秘购物者来完成一项任务,比如“访问网站,以低于 25 美元的价格购买最好的园艺用品”,并收集他们的体验反馈。

雇佣神秘顾客是一个完整的行业。与专门的神秘购物公司合作的优势是他们在打造购物体验和收集可操作情报方面的深厚知识和专业技能。

然而,如果你已经知道该问什么以及如何设计问题,你甚至可以去 usertesting.com 直接雇人,听听购物者在浏览网页时在做什么。

无论你选择使用分析、热图和访客回放、旅行地图、神秘购物者,还是以上所有方式,你都会有一些好主意,知道应该关注哪些方面来改善产品发现体验。

改善电子商务现场搜索和发现的 12 种方法

T14 T16

以下是一些通过激活机器学习、动态刻面、即时索引等功能来改善访客体验的方法,以提供更好、更智能的结果,实现更一致的转换。

使用 AI 获得高质量结果

在 2019 年和 2022 年,“面具”意味着完全不同的东西。在新冠肺炎之前,搜索“面膜”的买家可能是在寻找化妆产品。随着疫情的出现,这一切都变了。

为每个可能的排列手动调整目录是不切实际的。商家需要自动化来根据消费者行为的变化实时调整结果。这里的关键是机器学习。

机器学习提高了你的电子商务商店根据用户搜索 和购买 的内容自动调整搜索结果的能力。

一个智能的搜索引擎应该知道用户何时转换(注册、加入购物车、购买或其他)来为将来的查询和页面浏览增加类似的结果。

机器学习 已经不是什么稀罕物了。是必备的,尤其是很多产品的网店。搜索引擎可以使用 强化学习 对搜索结果和用户行为进行评分,以随着时间的推移自动改进结果。

(如果你正在寻找机器学习的解决方案,有一点需要注意,人工智能或人工智能这两个术语可以与机器学习互换使用。)

实现更好的过滤器和刻面

研究从 尼尔森和 诺曼已经证实了分面搜索的必要性;当用户面对太多的选择时,他们会忽略他们正在寻找的产品,而去别的地方。方面已经成为网上购物的一个组成部分,可以更快地过滤结果。

允许你的客户根据价格、颜色、评分或其他因素过滤结果是至关重要的——尤其是对于拥有成百上千种产品的网站。您的电子商务搜索和发现平台应该支持搜索结果中的搜索方面和过滤器 和集合页面上的 ,以帮助客户缩小结果范围,找到他们真正需要的东西。

搜索面和过滤器有什么区别?简而言之:

  • 过滤器 通常不会随着搜索的不同而改变

  • 刻面 根据搜索结果中产品的属性而变化

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

创建丰富的过滤器和方面可能看起来很难,但幸运的是,现代搜索解决方案将使指定和实现它们的任务在几分钟内完成。根据您使用的工具,过滤器和方面可以根据您的产品属性自动生成。

同样值得注意的是,过滤器和方面不仅在搜索结果页面上有用,它们还可以用于类别和收藏页面,以快速缩小结果范围。

连接实时数据搜索成功

点击率(CTR)等参与度指标为微调结果提供了一些价值,但签约、注册或销售等转化指标最终为企业提供了更多价值。

当你将搜索结果与转化率联系起来,并加入机器学习时,你就可以建立一个正反馈循环,从而获得成功。

如果一个访问者搜索一个项目,点击一个产品结果,并购买它,你的搜索解决方案应该建立“啊哈”连接,以自动优先排序相似的搜索结果。

它也可以在分类页面上工作;如果客户不断购买顶部的第三个项目,集合可以重新排列页面上项目的优先级。

通过即时索引和更新获得结果

当您直接在 CMS 中或通过产品库存管理系统(PIM)向您的在线商店添加或编辑产品时,更新定价、更改库存等。,它应该会立即反映在您的搜索索引中。

不幸的是,对于许多搜索引擎来说,这些日常变化可能需要 24 小时或更长时间才能更新。这太长了,可能会伤害转换。

许多解决方案宣传接近实时或快速的索引,但通常这意味着只有 初始 索引是快速的(取决于您的目录大小,这可能需要几秒或几分钟)。找到一个提供快速产品信息索引的解决方案。它还应该为产品目录的添加、编辑、更新、删除等提供快速更新功能。,所以你永远不会失去一个机会。

提升类目和收藏建议

你想把最畅销、最受欢迎的商品推到你的分类或收藏页面的顶端。通常,类别和收藏可以按价格、评级、受欢迎程度和其他过滤器进行排序。

这太棒了,但更好的是能够根据商业标准智能地推广产品的规则。

一些例子:

  • 您可能想要创建智能规则,按照最畅销、最高评级和特价商品来显示收藏

  • 为每位顾客设定个性化产品的规则(更多个性化信息见下文)

  • 热门内容也一直在变化,因此规则可以具体到为“过去 7 天该类别中最畅销的项目”排列列表的优先级

用于发现的商品销售

实体店零售商可以设立展示区,鼓励潜在顾客往购物车里添加更多商品。这些商家有很好的机会进行销售或增加订单价值,因为买家可以看到大量的产品选择。

对于电子商务来说,这要复杂得多。如果买家想买返校背包,你如何让他们了解铅笔、活页夹甚至童鞋?

对于大多数在线企业来说,搜索营销很难。传统上,这需要大量的手动工作或一个使用数据科学的工程师团队来发现推广相关产品或显示“您可能也感兴趣”的最佳时间。

好消息是,你可以使用现代的现场搜索解决方案来提高转化率,而不需要投资一个全职的搜索工程团队。使用数据,较新的电子商务平台可以智能地将相关商品插入搜索结果,以提供销售体验。可以根据以这种方式推广产品

  • 个性化:过去的购买历史、性别、年龄等。

  • 有相似购买习惯的顾客

  • 基于类似的竞争对手产品

  • 或您指定的其他数据和规则

融入实时库存系统

不要让你的客户因为缺货而放弃你的网站,或者卖给他们一件你无法完成的商品。推荐让他们保持参与的选项。

低库存或脱销商品可以自动降级或从搜索结果或收藏页面中隐藏。

相反,高库存或补货商品可以在搜索结果或收藏页面中增加。这两种情况都需要一个可以连接到库存管理系统的搜索和发现系统。您应该能够根据库存水平设置规则来包含/排除或增加/隐藏项目。

个性化并提升内容可见性

如果你知道顾客过去曾购买过耐克鞋,在他们下次光顾时,你可以推荐更多的耐克产品。个性化的使用可以极大地改善用户体验和转化率。

BigCommerce 发现个性化可以降低 20-30%的跳出率。(典型的零售网站跳出率约为 30-55%)

内置个性化功能和/或连接到 第三方个性化解决方案 应该是您的必备技术。个性化为单个访问者创建上下文配置文件,以便您可以提供自定义的相关搜索结果和显示内容。基于用户偏好、位置、性别、过去购买历史、产品类别等对结果进行个性化设置。

【使用自然语言处理】

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

研究显示 三分之一的搜索包含 4+或更多关键词。在站点搜索的上下文中,NLP 是分析查询以推断结构和含义的过程。在这种情况下,结构指的是高度定义的信息,例如类别或数字。它还可以表示事物之间的关系。常见的例子包括大小、颜色、地点、名称、时间、实体和意图,但还有更多。

如果用户键入“低轮廓床垫床单”或“大号床垫床单”,您的搜索引擎需要解析这些信息以返回高质量的结果。电子商务网站使用 NLP 会影响你的品牌认知、用户体验和转化率。

错别字容忍和自动补全

对于电子商务搜索来说,一个不可见且经常被忽视的 UI 元素是如何处理打字错误和拼写错误。某处 之间 20-30%的搜索词 可能包含一个拼写错误!

有几种不同的方法来处理错别字和拼写错误。一个好的网站搜索和发现工具会给你提供选择,包括添加“你的意思是?”搜索结果页面中的结果和/或允许输入错误的自动完成。

对某些味道使用错别字容错是一种最佳实践。不要失去那些认为你不卖“bakcpacks”或“addidas”的顾客。

页面加载时间

亚马逊向 展示了返回结果中仅仅 0.001 秒的差异就意味着巨大的损失。您的搜索工具或搜索提供商的加载时间应该以毫秒为单位。

A/B 测试提升搜索

对于一个给定的查询,如果你改变了搜索结果会怎样?你的点击率、转化率、销售额或用户满意度会更好还是更差?A/B 测试可以用数据帮助回答这个问题。

测试可以在任何东西上进行,从产品术语,到你的数据如何被索引,到搜索结果的设计。一个现代的搜索解决方案应该允许搜索 A/B 测试,并根据你建立的任何标准,就什么样的搜索算法帮助你的公司改善其底线结果提供指导。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

增加电子商务转化率的奖励提示

我们已经讨论了搜索和发现,但让我们来看看其他一些改善购物者体验的现场机会。这里有一些关于网站可用性和用户体验的额外提示。

结账流程

减少结账过程中的摩擦可以提高转化率。这包括 UX 的变化,如隐藏结帐页面上的附加字段,除非客户需要它们,例如,如果送货地址和帐单地址相同,就没有必要同时显示它们。结账(无双关语) 其他提示 摘自 Rejoiner 关于改善结账顾客体验的文章。

购物车报废

以平均 近 70%的购物车废弃率 ,难怪商家要花时间优化他们的购物车 UX。关于58%的时间,网购者仅仅是浏览,但那另外 42%应该是为了成功而优化。例如,同一项研究显示,20%的购物者因为设计相关的问题而放弃购物车。这方面的改进,如为客户提供查看订单总成本的方式或提前显示信用卡支付选项,可以积极提高销售额和转换率,并避免可怕的废弃购物车。

文案

提供最低的价格、最快的运输或最好的客户服务肯定能提高转化率,但你的竞争对手也能做到。为了脱颖而出,考虑你的产品描述。Moz 解释了公司如何通过更好的文案 使转化率翻倍。更好的产品文案可以增加你的产品的情调和紧迫感,帮助你的公司脱颖而出。

移动友好型客户体验

桌面用户以 更高的速率 进行转换,但是移动用户以 大约相同的速率 向他们的购物车添加商品。如今,在线零售网站的移动流量高达50%。我们上面推荐的所有搜索和发现改进——设置规则、网站速度、即时索引等。—将适用于移动设备和台式机,但零售商需要特别注意为移动设备打造出色的 UX。

社交证明和社交媒体

人们想买别人喜欢的产品:92%的潜在买家 在考虑购买时阅读顾客评论 和评价。让顾客评论更加可见,添加带计数器的社交分享按钮,甚至 显示实时购买 都可以帮助提高转化率。

文档索引

易贝研究 发表了一篇论文 显示“视觉形象是向网上购物者传达关键信息并影响他们选择的强大渠道。”除了在你的产品页面上包括更多的图片(和/或产品视频)之外,研究人员还发现使用更大的照片可以让潜在客户更容易地检查产品的细节。这反过来增加了人们购买该产品的可能性。( 来源 )

CTAs

您在产品和登录页面上的行动号召(CTA)很重要。某些短语——立即购买、免费加入、加入购物车——已被证明比其他短语更有效。大多数零售商已经在使用这些短语了。但是也有其他因素可以改善你的 CTA,包括移动优化、颜色、页面位置等等。查看 GrowCode 的完整文章 了解更多想法。

SEO

在帮助数以百计的客户安装搜索工具后,我们了解到的最清楚的一点是,大多数网站搜索工具并没有以最佳方式工作,主要是因为元信息不足或网站结构定义不佳。你所做的改善站内搜索的工作也是你需要做好搜索引擎优化(SEO)来吸引访问者访问你的网站。优化的网站结构、元标签、标题、规范等。,对站内搜索和网络搜索引擎都有帮助。整本书都在讲述如何通过搜索引擎优化来为你的网站吸引新客户,但是要想成为一本好的入门书,可以看看 Ahref 的 电子商务搜索引擎优化指南

结论

大多数电子商务平台,如 Shopify、Magento、WooCommerce 和 BigCommerce,都有非常好的设计,用于管理支付、库存和退货的良好工具,以及与大量其他系统的集成。

由于各种原因,‍But 帮助访问者找到他们想要的东西仍然非常困难,尤其是对于有很多产品、类别和收藏的网站。好消息是,新的电子商务搜索和发现平台可以有所帮助。特别是,机器学习的进步使得智能交付产品结果以及自动订购和提升产品以提高转化率变得更加容易。

通过爬虫或 API 改善搜索索引的 12 种方法

原文:https://www.algolia.com/blog/engineering/12-ways-to-improve-your-search-index/

开始新业务时,搜索索引通常是我们与客户讨论的第一个话题。无论是大型企业级网站还是小型电子商务商店,向网站添加搜索的第一步是通过网站爬虫或 API 索引您的内容。站点的架构、模式和内容都会影响索引。

在这篇文章中,我们将涉及许多我们与客户讨论的话题,并分享一些改进搜索索引的实用技巧。

注意:这不是一篇关于 SEO 的文章。虽然 站内搜索优化和 SEO 是相关的——你为站内搜索优化搜索索引的工作也有助于谷歌搜索或必应的可见性——它们满足不同的需求。搜索引擎优化是面向互联网的可见性,而现场搜索解决用户体验。然而,XML 站点地图、内部链接、元标签等。,你为一个人创造会帮助另一个人!

什么是搜索索引?

一个 搜索索引 帮助用户在一个网站上快速找到信息。它旨在将搜索查询映射到网页、文档或其他站点内容。这类似于一本书的索引。它允许用户使用关键字快速找到有用的信息,但与书籍相比有许多技术优势,例如帮助访问者更快地找到他们想要的东西。搜索索引既可以通过网络爬虫创建,也可以通过 API 访问创建,但两者在不同的情况下都有各自的优势。

什么是全文搜索?

全文搜索需要索引你网站上的每一个词,以使搜索引擎在许多记录中导航变得容易。传统上,全文搜索引擎使用“倒排索引”,实质上是文档中所有关键字以及这些关键字位置的映射。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

在上面的例子中,关键词“便携”和“声音”不在索引中,但是一个人工智能支持的搜索引擎理解上下文来提供很好的结果。

人工智能支持的搜索引擎现在可以超越关键词来理解上下文,以提供更丰富的结果。以查询“便携音”为例。如果基于关键字的搜索引擎在索引中具有术语“便携式”和“扬声器”,则结果页面可能包括正确的项目。通过机器学习,即使关键词不在网站上,你也可以通过检测上下文和单词之间的相似性来获得好的结果。例如,机器可以学习“便携”一词与“手持”、“移动”、“电话”相似,都是在含义上接近的*,但不一定是同义的 。*

搜索爬虫和 API

构建搜索引擎索引有两种主要方式——搜索爬虫或通过 API 直接从数据库中提取数据。每种方法对不同的情况都有好处。

举例来说,对于大多数静态网站,一个 爬虫 就可以了。又快又全面。 API 驱动的索引 是拥有动态或不断变化的数据的网站的理想选择。API 有自己的优势,比如快速添加新数据源的能力。

什么是快速索引?

当您添加新内容或更改现有内容时,您希望结果可以实时搜索。 快速索引 是零售商和品牌销售新产品或发起活动的必备。有时,当我们的客户在快速索引方面遇到问题时,通常是由于这样的问题:

  • 由于复杂的 API 架构问题,内容索引速度不够快
  • 内容在索引中,但不在结果中显示
  • PDF 和 DOC 文件无法索引

大多数问题都可以相对较快地解决。首先要做的是检查爬虫如何看待你的网站文档,或者你的数据管道是否阻塞。使用 sitemap.xml 文件帮助爬虫总是一个好的实践,可以帮助你的内容快速地被索引。如果你通过 API 索引你的站点,很可能有一个需要解决的集成问题。

为了帮助完成这一切,并简化索引过程,我们提供了多种编程语言的 API 客户端、帮助您可视化索引和爬行过程的仪表板,以及以各种方便的方式与 API 交互的 CLI 工具。

12 种方法优化和丰富你的搜索索引

无论你是使用搜索爬虫还是通过 API 连接你的站点,都有很多方法来配置和改进搜索索引。下面的实际建议直接来自我们经常与通过爬虫或 API 构建索引的客户的对话。其中一些方法更适合基于爬虫的索引,另一些与 API 索引相关,还有一些两者都相关。

这里有 12 种方法可以优化你的搜索索引

1。打开图形元数据

脸书在 2010 年发布了他们的 开放图协议 ,从那以后它被搜索引擎广泛使用。搜索结果通常包括图像预览,通常由 Open Graph 提供支持。

通过在你的内容中添加开放图形标签,你可以用如下信息来改进搜索索引:

  • 带有内容类型的标题
  • 图片和网址
  • 添加额外的打开图形数据

除了标题、描述和图片之外,Open Graph 还可以使用大量其他数据来丰富搜索索引,但许多人不知道或不使用它们。更多信息,请访问https://ogp.me/

2。Schema.org 格式

Open Graph 只是丰富 web 和搜索引擎索引数据的几个开放协议之一。有不同种类的模式可以用来标记页面内容。例如,如果你是一个食谱网站,你将有不同的标准来标记内容,比如说,一个活动网站。

Schema.org 为不同类型的网站发布和维护不同的模式词汇表。例如,对于音乐会、讲座或节日等活动,可以通过 HTML(或 JSON-LD)格式的标记添加票务信息,如offers属性。重复的事件可以被构造为单独的事件对象。

3。文章发布和修改次数

文章发布和文章修改日期/时间对于能够按新近度对内容进行排序是非常重要的。开放图形或 schema.org 格式都支持时间戳。

| | 文章:发布时间–日期时间–文章首次发布的时间。 |
| | 文章:修改时间–日期时间–文章上次修改的时间。 |

4。识别页眉和页脚内容

各种各样的内容,比如你的导航,页脚,以及任何不特定于页面的内容,都应该放在页眉和页脚标签中,这样搜索引擎就会忽略它。通过标记页眉和页脚的内容,您可以让搜索引擎更好地理解页面的内容,从而可以正确地对其进行索引—在这种情况下,是导航数据与正文数据。

5。增加您的搜索索引

搜索索引可以通过多种方式增加数据,例如:

  • 通过 Google Vision API 添加颜色元数据
  • 使用第三方数据,如产品评级
  • 提取输入数据,用于创建过滤器和面

随着新信息添加到索引中,数据可能会增强。搜索引擎利用这些数据来提供更好的结果,让消费者更容易、更快地找到他们想要的东西。电子商务网站经常定期更新它们的项目,并且丰富的数据可以在更新期间被合并。

6。经营业绩数据

你的索引多于你的内容。非现场数据,如产品等级、利润、库存水平等。,对于搜索索引来说非常有用,有助于结果排名。可能有许多产品与搜索您网站的客户相关,但您的业务数据可以用来增强结果,以确保最好的产品被推到顶部。我们提供 自定义排名助推 ,帮助客户利用这类业务数据构建转换飞轮。

7。营销和活动数据

许多零售商进行季度、季节或假日销售。通过向站点索引添加销售和活动数据,您可以调整结果以显示销售项目。

您可以添加特定的销售字段或使用折扣字段来计算何时有销售。在后一种情况下,搜索引擎将知道你的展示价格低于你的常规价格,这有助于对打折商品进行排序,以帮助访问者找到最佳的节省。然后,您还可以使用一种算法(通过我们的 排名公式 )根据不同商品的销售状况或其他属性对其进行提升。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

搜索索引应包括可用于构建过滤器和方面的字段和数据

8。过滤器

可以使用您的搜索索引构建搜索过滤器和方面。我们可以自动推断和创建过滤器(例如,使用 查询分类 ),但是您也可以在需要时设计定制过滤器。决定提供最佳过滤器的关键在于了解您的客户以及他们希望如何分割您的产品。查看我们关于 过滤器和刻面 的指南,了解更多信息。

9。内容类型

有不同的元标签可以帮助搜索索引按类型理解内容。内容会把访问者带到视频、文档、页面或其他地方吗?使用 HTML 或 JSON-LD 标签将您的内容标识为视频、音频、摘要等。,帮助您的搜索索引按类型对内容进行排序或筛选。

10。个性化

客户期望 ,希望搜索结果个性化。如果你为会员提供免费送货,这些信息应该在数据中。如果有按位置的折扣,那么您也会希望在记录中包含地理数据。通过将您的搜索索引连接到这些数据,您可以轻松地对搜索结果进行个性化设置。

11。与其他第三方系统集成

大型企业通常拥有复杂的基础设施,数据来自不同的系统。需要将 的数据 与你的供应链管理或者PIM整合吗?您将希望您的搜索解决方案支持一个 API 来实现系统间的即时数据索引。

十二。查看您的分析和搜索指标

网站所有者应该计划花一些时间审查他们的 分析和搜索指标 ,以确定客户正在查询的关键词。了解客户如何搜索有助于发现丰富索引、添加或调整过滤器以及改进搜索引擎结果的机会。

一切都是为了索引伟大的内容

构建丰富的搜索索引可以极大地提高搜索性能和客户满意度。通过了解可以包含的不同类型的数据,网站所有者可以确保他们为客户提供最佳的搜索体验。

要了解更多关于如何设置您的搜索索引或利用我们的个性化和定制排名功能, 今天就联系我们 !我们提供了一个 免费试用版演示版 ,以便您可以探索我们的解决方案所能提供的一切。

电子商务现场搜索的 15 个最佳实践

原文:https://www.algolia.com/blog/ecommerce/15-best-practices-for-ecommerce-on-site-search/

网页顶部的搜索栏会对你公司的成功产生巨大的影响。

很可能你以前读过这个数据——大约有 40%的访问者会在登陆一个电子商务网站时使用现场搜索,转化率是非搜索者的近两倍,并占 13% 更多收入。随着电子商务网站的转化率介于2-3%之间,搜索技术可以提供额外的竞争优势,将你的转化率推得更高。

我们已经分析了我们自己的客户搜索账户的分数,并在网上搜索,以找到很好的 电子商务搜索 的例子。虽然没有一个放之四海而皆准的方法,但是有一些通用的原则可以让站点搜索成功。

在这篇博客中,我们将分享 15 个提高转化率的在线零售网站搜索最佳实践和范例。

如何衡量电子商务搜索的影响

你今天的收入中有百分之多少来自网站搜索?在你优化你的网站搜索之前,最好从一个基准开始。

Google Analytics 和其他分析平台有报告来衡量执行网站搜索查询的客户与不执行网站搜索查询的客户产生的收入。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Image via OptimizeSmart showing on-site search tracking via GA4.

Google Analytics 中的搜索报告确定了访问者登陆你的网站后在寻找什么。该报告有助于显示访问者正在搜索的搜索词以及这些搜索的参与度。然而,现在,我们最感兴趣的是网站收入中包含网站搜索的比例。这是我们希望通过搜索优化来影响的数字。

现在你已经有了基准,是时候改善用户的搜索体验了。

电子商务搜索的 15 个最佳实践(附实例)

贝玛研究所已经发布了 145(!)电子商务搜索和产品过滤器指南。您可以在 性能指标评测页面 上了解它们的概况。

进入主题的一个稍微简单的方法是我们下面的 15 个最佳实践列表。这些最佳实践与 Baymard 的 UX 功能列表有相当多的重叠,例如搜索自动完成、结果布局、搜索功能、产品缩略图、产品过滤器、产品页面等等。

1。让搜索更加可见

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Search is practically hidden on this site.

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

The search bar is clearly displayed.

无论是 永远化妆 还是 自行车仓库 都在他们的网站上有搜索,许多类别和收藏可以指导游客的购买之旅。但是,自行车仓库的搜索栏的可见性要高得多。

能见度有什么不同?它会对搜索和网站性能产生很大的影响。

当一家公司 让他们的现场搜索更加可见

  • 网站搜索量攀升 439%
  • 当访问者使用搜索时,他们在网站上停留的时间增加了 110%
  • 页面浏览量增加了 45%
  • 目标完成量增加了 242%

扩大搜索栏是一个简单的网站更新,但是会对网站性能产生巨大的影响。

2。错字公差

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

PackageFree offers search with autocomplete suggestions with spelling correction.

对于电子商务搜索来说,一个不可见且经常被忽视的 UI 元素是如何处理打字错误和拼写错误。介于 之间的 20-30%的搜索查询 可能包含一个拼写错误!你不想失去客户,因为他们拼错了查询,却得到一个“没有结果”的回应页面。

有几种不同的方法来管理搜索错别字和拼写错误。一个好的网站搜索工具会给你提供选择,包括添加“你的意思是?”搜索结果页面中的结果和/或允许输入错误的自动完成。

使用某些口味的 错别字容差 是避免失去认为你没有“bakcpacks”或“addidas”的顾客的最佳做法

3。智能营销——适时推广相关内容

购物者是直观的。店内销售——无论是在过道还是在收银台——都是鼓励购物者在购物车中多加一件商品的基本做法。

在线零售商的日子更难过了。你需要平衡让购物者先找到他们想要的东西。然后,您需要确定何时以及如何展示其他产品,以及展示哪些相关产品。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Chewy uses product data, sales data, and personalization to improve merchandising.

在这里我们可以看到【Chewy.com让我们可以很容易地找到相关商品——这些商品可能是畅销书、更高利润或个性化结果的组合。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

将商品添加到购物车后,它们也会提供类似的结果。

明智的做法是在两个位置提供相关商品,以便在顾客选择去的任何地方抓住 销售 机会,并且可以设计成不引人注目,不干扰购买体验。还有许多解决方案可以帮助优化相关项目,包括我们自己的 Algolia 推荐的

4。NLP

如果用户在你鞋店的搜索栏中输入“红色篮球耐克鞋 14 号”,搜索引擎需要解析这些信息以返回高质量的结果。电子商务网站使用【NLP】可以影响你的品牌认知、用户体验和转化率。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

我在 FootLocker.com 的上搜索“红色篮球耐克 14 码”。乍一看,他们的网站似乎没有解析查询。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

然后我从零开始重新开始了我的访问。这次我没有使用搜索栏。相反,我通过点击男子篮球鞋和过滤排序来浏览他们的网站。实际上有很多结果!我点击进入这些结果中的每一个,一些与大小 14 的股票。换句话说,这些产品 应该 已经出现在我的第一次搜索中。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

如果访问者只使用搜索,他们可能已经放弃了网站,而没有意识到有更多的产品可用。

相比之下,Zappos 在类似的搜索方面做得非常好。我将“鞋”添加到搜索短语中,因为 Zappos 还销售其他服装。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

像“14 号红色篮球鞋”这样的复杂搜索变得越来越常见。研究表明, 三分之一的 所有搜索包含 4+或更多关键词。

在网站搜索的背景下,自然语言处理(NLP)分析查询以推断结构和含义。在这种情况下,结构指的是高度定义的信息,例如类别或数字。它还可以表示事物之间的关系。常见的例子包括大小、颜色、地点、名称、时间、实体和意图,但还有更多。

投资支持自然语言处理的搜索解决方案是电子商务提供商的最佳实践,有助于确保访问者获得相关搜索结果,从而快速找到合适的产品。

5。过滤器和刻面

穆塞乔 应该为他们的一长串滤镜和刻面获奖。这让我想起了电影 飞机 中的一个场景——名单似乎永远排不完。多肯定比少或没有好。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

And these are only some of the facets displayed on a Moosejaw on-site search.

我们来简单解释一下一些术语。说到搜索,其实有两种滤镜:

  • Facets :这些是根据搜索而变化的动态列表。在这种情况下,搜索的是“jacket ”,显示的方面不同于您在其他搜索中找到的方面,如“boots”或其他项目。
  • 滤镜 :滤镜一般不变;不管你搜索的是什么产品,这都是一个静态列表。

更多关于 刻面和滤镜的区别这里

如果你有一个拥有成百上千商品的大型商店,为每个产品类别设计面和过滤器是不切实际的。过滤器的诀窍是在索引时根据产品元数据动态生成它们。

例如,Algolia 客户可以简单地将任何 HTML 元素包装在特殊的过滤器标签中,以告诉应用程序存储元素的属性。然后,这些属性可以用来创建过滤器和可在查询中搜索的方面。

刻面的另一个选择是使用 查询分类 ,可以对信息进行分类,自动生成过滤器和刻面。

分面搜索对于帮助客户缩小搜索结果范围,准确找到他们想要的东西非常有价值。为站点搜索创建的相同方面和过滤器也可以用于静态或动态目录或集合页面。

6。个性化

个性化是关于提高搜索相关性以促进转化。当已知用户搜索你的网站时,搜索功能应该提供 个性化结果——用户更有可能购买的特定产品。

个性化的使用可以极大地改善用户体验和转化率。BigCommerce 发现,个性化可以将跳出率降低多达20-30%。(典型的零售网站跳出率在 30-55%左右)。

在一项 麦肯锡研究 中,100%的顶级四分之一零售商表示,个性化是他们的五大优先事项,但只有 15%的零售商跨渠道实施了个性化。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Amazon incorporates personalization throughout the shopping experience.

亚马逊因在他们的平台上建立个性化而闻名。如【HBR】:

“该公司有效地创造了一种数字营销的新模式:与客户的一对一关系,通过数据收集提供信息,通过机器学习进行优化,并通过其他形式的人工智能进行培育。”

这位《HBR》的作者接着问道:“一个离线玩家如何……希望赶上来?”

亚马逊有一千多名工程师在研究这个问题!无论你是离线玩家还是在线玩家,这项任务似乎都令人生畏。

好消息是,有了 Algolia 或其他第三方个性化解决方案,你不再需要一大群搜索工程师。

无论您选择哪种解决方案,数据都是关键。在遵守数据隐私法的情况下,您收集的数据越多越好。一旦收集了数据,每次查询都会使用这些数据来修改结果,使之与个人更加相关。这可以简单到衣服尺寸偏好、性别、地点或任何其他可能影响其结果和行为的个人特征。

通常,个性化的第一阶段是通过查询发送信息,以便用其他分析工具记录。然后可以离线分析性能影响,以确定这是否有用,或者您甚至可以 A/B 测试有无个性化的结果。

通常,查询可以与个人信息分层,以增加和影响查询,从而产生高度个性化的结果。

7。移动搜索

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

For mobile users, Untuckit offers a custom responsive search design.

2019 年 Q1,智能手机占全球零售网站访问量的65%。然而,移动优化搜索具有挑战性。响应式设计不是简单地调整几个物体的大小,而是考虑到整个购买者的旅程。

这里有一个很棒的例子:【Untuckit】很好地构建了一个手机友好的网站,在屏幕的正上方有一个容易找到的搜索按钮。它们提供了一个方便的常用过滤器下拉菜单和一个附加过滤器按钮。当我输入时,搜索栏显示自动建议的结果。

8。同义词

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

A search synonym like t-shirt and tee shirt should return almost identical results.

你的顾客是在寻找 t 恤还是 t 恤?如果你的搜索框只识别一种拼写,你就会错过机会。使用同义词来创建术语词典是健康网站搜索的最佳实践。

相关的术语也应该是一样的。例如,衬衫、上衣、衬衫或运动衫将包含重叠的项目,条纹衬衫、条纹上衣或布列塔尼等术语也是如此。在这种情况下,“top”是一个包括衬衫或布列塔尼服装的类别,但它本身也可以用作搜索词。

今天,像这样的搜索依赖于好的标题、产品描述和元数据。很快,电子商务搜索引擎将提供 基于向量的搜索 ,它使用数学方法来理解单词及其含义,以提供更相关的结果。

9。带有产品缩略图和价格预览的即时搜索

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Fantastic instant search on HannaAnderson.com.

HannaAnderson.com提供了一个即时搜索的高手。下面是上面截图中发生的事情:

  • 当您键入时,结果和缩略图会立即更新
  • 显示“你是说”拼写检查功能
  • 显示相关收藏(如复活节商店)
  • 列出物品价格

对于购物者来说, 像这样的即时搜索 是赢家,因为它太直观了。像自动建议(或 自动完成 )一样,即时搜索会在您键入时显示结果,但也包括缩略图。此外,展示价格是帮助购物者快速找到他们想要的东西的好方法。

顺便说一下:HannaAnderson 搜索在移动设备上也很好用(我查过了)。

出于某种原因,大多数在线商店要么没有在即时搜索上投入时间——他们仍然要求人们在输入查询后在键盘上点击“回车”——要么只提供有限的结果显示。我们的 电子商务网站搜索产品 和许多其他产品现在提供一些即时搜索的现成味道,因此任何公司都可以在几分钟内建立丰富的体验。

10。与转换相关的机器学习

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Dynamic re-ranking capabilities, such as shown above in Algolia, allow anyone to tweak the search algorithm to improve search results using conversion data.

众所周知,谷歌根据搜索活动来改善网络搜索结果。如果你点击一个结果,访问一个网站,然后立即返回到搜索结果,谷歌知道你刚才点击的结果是一个糟糕的匹配。随着时间的推移,它会调整和完善算法,将更好的结果提升到页面的顶部。

如今,新的网站搜索引擎拥有类似的功能,可以将搜索与电子商务转化率联系起来。他们可以根据点击和转化(购物车活动、购买、结账、折价或者任何你认为成功的东西)来区分好的结果和坏的结果,从而提供更好的结果来提高你的转化率。

例如,“面具”在 2019 年和 2023 年的含义完全不同。在新冠肺炎之前,正在寻找面膜的买家可能正在寻找美容护肤品。随着疫情的出现,这一切都变了。带有 强化学习 的搜索平台会自动开始根据转化率调整结果。

作为最佳实践,你也应该能够调整输入。您可能希望将搜索结果调整为利润更高的项目或结果之上的个性化层。

11。使搜索可视化

视觉搜索,有时被称为 视觉购物 ,对于营销人员设计现场搜索和开发 SEO(搜索引擎优化)策略变得越来越重要。

人的大脑有一半以上是专门用于视觉和视觉的 处理,而对大多数买家来说 图像比文字 更重要。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Image via SmartInsights, images are more important than text.

可视化结果应该出现在即时搜索结果和你的结果页面上。视觉搜索还有其他用例,包括增强现实(AR)。就连Snapchat都用针对 AR 优化的视觉搜索钻进了游戏。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Abel & Cole delivers search results that fits beautifully with their website design and brand, both in instant search and on the search results page.

12。A/B 测试

在一个经典的网站 A/B 测试中,你可能会划分流量,以确定哪种变化——蓝色或绿色的行动号召按钮——转化得更好。通过测试搜索结果设计或搜索数据本身,您可以对站点搜索结果做同样的事情。

这里有几个你可以测试的例子

  • 个性化对比常规结果
  • 畅销商品 vs 最高评价商品
  • 新品 vs 打折商品
  • 不同的产品类别
  • 过去 7 天与所有时间的最畅销商品

13。阿达和 WCAG 可用性

可以合理地假设,你网站的大量访问者——多达五分之一——将是残疾人。这可能是从色盲这样的视觉障碍到诵读困难这样的认知障碍。

在一项研究中,多达71%的残疾人因为糟糕的体验而从他们正在购物的网站上弹回。

对于这样的障碍,你的网站需要仔细考虑颜色对比、动画和过渡等方面,并提供适当的替代方案。网站搜索,无论是你的搜索结果登陆页,还是对拼错单词的错别字容忍度,都是一样的。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

对于搜索栏,一些注意事项包括:

  • 将搜索栏定位在可预测的位置(通常是顶部中间或顶部右侧)
  • 使用可区分的颜色
  • 在搜索放大镜图标上使用 alt-text

同样,对于搜索结果,一些考虑因素包括:

  • 允许用户使用键盘浏览结果
  • 屏幕阅读器的状态消息
  • 带有图像的搜索结果

你可以在我们关于 网页内容无障碍指南(WCAG)和美国残疾人法案(ADA)数字标准的长文上阅读更多建议,并搜索

14。整个网站搜索—不仅仅是你的产品

无论某人是在寻找产品还是退货政策等问题的答案,网站搜索都应该提供出色的用户体验。无论你选择什么样的搜索解决方案,都应该能够提供搜索结果,并且最好能够对这些结果进行分类,以便于浏览。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Art.com indexes their entire site, including non-product page results.

15。搜索指标

你的网站搜索提供商应该提供内置的 搜索分析 来帮助你了解趋势、无效搜索(比如 没有结果 )以及需要改进的地方。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Metrics to analyze product search data.

搜索量是整体流量的一个很好的指标,它告诉你有多少人在你的网站上使用搜索。点击率帮助你了解你的搜索有多有效,你是否有正确的内容。

热门搜索和意想不到的趋势显示了用户的意图。这是一个需要关注的重要列表。如果人们的兴趣变了,热门搜索的列表也会变。这是一个很好的迹象,表明你可能需要在你的网站上添加额外的内容,或者在你的电子商务商店里储备新产品。

关于遗漏内容、查询术语和每次搜索次数的报告可以帮助你发现改进网站搜索的机会。

下一步:电子商务网站搜索解决方案

我们在上面展示了大量信息。尝试做每一件事似乎令人畏缩。

最终,您希望为每个查询提供最相关的结果和最佳用户体验,这需要特性和功能的结合。

好消息是,许多现代电子商务搜索平台提供许多(如果不是全部)上述功能。

网站搜索关键绩效指标的主要发现—2020 年数字商务 360 度调查

原文:https://www.algolia.com/blog/ecommerce/2020-survey-site-search-kpis/

我们第二次与 Digital Commerce 360 合作,调查零售商关于网站搜索对收入和关键绩效指标(如转换率)的影响(上次调查的结果是此处是)。

我们要求 108 名受访者将他们的搜索分为高级、中级或初级。当调查结果出来时,最有趣的发现就是围绕着这种分裂。

网站搜索提高转化率——如果做对了

我们都知道网站搜索是电子商务购物之旅的重要组成部分。正如我们的一位客户所说:

搜索是第一印象的重要指标。关键是要为你的客户提供他们想要的服务。

—Nicholas Maupin,安德玛全球电子商务产品经理

但今年的调查显示,拥有基本网站搜索的零售公司可能会失去有价值的客户,而高级网站搜索如果做得好,会增加转化率和收入。

也许最惊人的结果是,投资于高级搜索功能的零售商的转化率提高了 50%:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这一切都始于 KPI

虽然只有 14%的受访者投资于高级搜索,但他们也是最擅长将人员、策略和专用资源投入到网站搜索中的人,也是获益最多的人。

以下是调查中让高级零售商脱颖而出的一些要点:

  • 为商业利益相关者提供管理网站搜索的工具和资源。最了解消费者行为的团队成员获得了监控和优化网站搜索所需的工具,而不是要求忙碌的 IT 团队做出改变。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • 投资于网站搜索功能和策略。最有效的网站搜索体验不仅仅是速度和相关性,它还包括个性化、过滤和分析等功能。
  • 定义有意义的站点搜索 KPI。毫不奇怪,拥有高级网站搜索能力的企业最有可能已经确定了他们想要遵循的指标:高度发达的电子商务 KPI 包括那些衡量网站搜索的指标

要了解更多关于零售商如何通过搜索使转化率翻倍的信息,请阅读完整报告:网站搜索:正确操作时的高转化率投资

3 个例子帮助你改变“无结果”搜索页面

原文:https://www.algolia.com/blog/ux/3-examples-to-help-you-transform-the-no-results-search-results-page/

出色的搜索体验应该毫不费力地将用户与他们的需求联系起来。然而,一个“没有结果”的页面(当搜索引擎不能返回任何结果时的错误)可能会破坏这种期望的连接并导致挫败感。有了精心设计的搜索体验,你可以避免“没有结果”的页面,并为每个用户指出一个发现新事物的方向。

优化搜索是网站寻求与其他品牌竞争、获取和保留用户、提高转化率和参与度的关键组成部分。搜索体验的每一部分都应该促进发现,避免“没有结果”的页面对这一目标至关重要。

在这篇文章中,我们将通过几个例子来说明如何将一件“没有结果”的事情转化为一条新的前进道路。

为什么“没有结果”的页面是一个 UX 死胡同

一些网站精心制作了“无结果页面”,提供幽默的错误信息或以某种方式与品牌保持一致。但这些页面,无论多么机智,创造了一个 UX 死胡同。如果用户没有找到他们需要的东西,他们很有可能会立即离开你的网站或应用。事实上, 12%的用户在一次不成功的搜索后离开了网站。原因如下:

【无结果】页面忽略下一步可能的步骤

有帮助的“无结果”页面可能包括microcopy提示用户再次搜索或提供建议的和流行的搜索。然而,许多人没有,这导致搜索之旅和与网站的整体互动到此为止。如果当用户找不到特定查询的结果时,你不为他们提供另一种选择,他们将没有任何潜在的后续步骤可循。

坚持不懈的用户可能会修改他们的搜索,试图更接近他们想要的,但他们会这样做,却不知道为什么他们最初的搜索失败了。然而,由于注意力持续时间短,用户搜索技能往往较弱, 许多用户在第一次失败后不会细化他们的搜索

【无结果】页面不能准确反映站点内容

“没有结果”页面给人的印象是,你的访问者想要的东西实际上并不存在于网站上。很多时候,现实是这些相关结果确实存在,但是站点的 内部搜索只是没有优化 来检索它们。搜索引擎可能会在错别字、同义词或非常具体的查询上出错。许多这些问题都可以通过优化你的搜索引擎来解决,这样用户的错误就不会导致“没有结果”的障碍。

记住, 43%的网站访问者会立即利用搜索框 。关键是要确保你的搜索是尽可能相关的,这样那些用户就会得到回报。

3 个搜索实例,替换了“无结果”页面

一个强大的搜索解决方案,如 Algolia,通过预测用户需求并确保每个用户都在一条通往 内容发现 的道路上,帮助用户 避免传统的“无结果”页面 。这里有三个不同的搜索体验的例子,它们消除了对“无结果”页面的需求

1。LaCoste——即时搜索结果,即使是无效查询

不管是什么样的查询, Lacoste 都会给用户提供一个网站的前进路径,就在搜索栏里。虽然不成功的查询会生成一条“抱歉”消息,但它也会直接在下面返回精选的产品。这有助于突出 Lacoste 丰富的产品目录,并为用户提供新的有趣的结果和参与机会,而不仅仅是一个死胡同。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

2。安德玛—允许输入错误的自动完成功能

一个未经优化的搜索引擎可能会被用户的错误绊倒,无法提供搜索结果。 安德玛 的搜索栏中的允许输入错误的自动完成功能既能捕捉用户输入的错误,又能为他们提供受欢迎的推荐商品建议。这一功能考虑到了人为错误,并允许用户修正路线以找到他们要找的东西。

例如,如果用户拼错了“sock”,网站仍然会提供用户可以点击搜索的热门结果。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

3。国家地理探险——基于浏览的搜索

国家地理的 探险网站采用独特的方式搜索 该网站鼓励基于浏览的搜索,使用特定范围的 过滤器和方面 。这种类型的导航最适合非常集中且通常较小的结果集。用户很快就熟悉了搜索目录的参数,并且可以很容易地调整他们的过滤器选择,以找到某些结果。这种类型的导航搜索确保用户总是有清晰的后续步骤来浏览内容,找到他们想要的东西。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

改善你“没有结果”的最佳做法页面

正如这些例子所帮助说明的,没有结果的页面对用户来说并不一定是死胡同。通过专注于改进一些不同的元素,你可以消除这个用户障碍:

建立你的同义词库

一个成功的网站搜索功能需要解析 同义词 ,因为搜索同一事物的访问者经常会使用不同的词来找到该项目。例如,在美国各地销售手提包的零售商会考虑到该术语的地区差异,如“purse”或“pocketbook”。一个强大的同义词库是必不可少的,它可以基于网站搜索数据来构建,以确保准确性。

使用自动完成和查询建议

通过向用户提供已知会返回结果的查询,您可以增加首次搜索成功的可能性。通过 自动补全和查询建议 帮助用户在点击 enter 键之前细化搜索,可以在他们开始搜索时为他们指出正确的方向。

利用分析了解用户需求

每次用户访问你的网站,他们都会提供 有价值且可操作的数据 。通过查找“无结果”搜索并改进您的数据集以最大限度地减少这种情况的发生,来利用这些信息。导致“0 个结果”的查询不可避免地会赶走客户,并且可能是错误标记内容或整体内容差距的指标。将那些未满足的需求考虑在内,并创建内容来填补在您的分析中明确发现的潜在差距。

通过优化的搜索让您的用户获得最佳搜索结果

出色的搜索体验可以促进发现,并彻底消除“无结果”页面。通过优化你的网站搜索,你将为访问者创造一条获得有价值结果的路径,即使他们没有找到他们想要的东西。从自动完成到联合搜索,再到过滤器和方面,Algolia Instant Search 拥有您需要的所有 UI 组件,来创建满足您用户需求的强大搜索。

要了解更多关于 Algolia 如何提高客户保持率和转换率的信息,请阅读我们的电子书“ 框外搜索 。”

3 键搜索框 UX 设计元素

原文:https://www.algolia.com/blog/ux/3-key-ux-design-elements-of-the-search-bar/

营销人员和网站所有者经常忽略他们搜索界面的设计,而牺牲了良好的搜索体验。笨拙或不直观的搜索体验会让用户感到沮丧,更有可能转到竞争对手的网站去寻找他们需要的东西。对于媒体网站、电子商务零售商以及介于两者之间的每一个网站来说,调整浏览体验的每一个部分都是必要的,包括搜索栏。

T3 T5

为什么搜索栏很重要

搜索栏通常是用户与网站的第一次互动。事实上, 研究表明 大约 43%的网站访问者会立即进入搜索栏,这些搜索者转化的可能性是其他人的 2-3 倍。

搜索栏可以为用户提供一种 的对话体验 ,其中每一次击键都是与系统有效的双向讨论。用户不应该为了搜索而对你的界面进行逆向工程。相反,这个过程应该感觉像一种自然的人类体验,可以快速引导他们找到他们想要的东西。你的网站必须为这些客户提供无缝的用户体验。

如何打造最好的搜索栏设计

搜索栏用户体验设计流程有三个关键方面:外观、位置和功能。所有这些方面共同作用,形成更加清晰高效的用户体验。

1。搜索栏的外观

外观有助于用户形成对搜索栏的第一印象——通常是对整个网站的第一印象。它帮助他们理解系统的目的和用例,并说服他们开始使用它和探索内容。在不牺牲功能的情况下,确保设计清晰合理是很重要的:

    • 保持简单,使用常见的设计模式。 用户来到网站,期望搜索栏以可预见的方式出现和运行。不要过度设计你的搜索栏,让用户填写太多的字段。用户只需输入一个字段就可以了。一个简单、干净的设计将使搜索栏易于查找和使用。
    • 使用放大镜图标 。现代用户立即理解放大镜是搜索的通用标志。你可以通过使用他们认可的设计模式来迅速吸引他们的注意力。
    • 考虑字段大小 。搜索输入和字体大小应该适应标准的用户查询长度—通常大约 27 个字符。确保在各种设备上进行测试,包括不同的 移动设备
    • 使用 microcopy 。在没有提示的情况下,用户会在搜索栏中输入各种各样的问题。如果你希望他们搜索特定类型的内容,那就告诉他们。 搜索栏中的简单提示 如“搜索产品”、“你想了解什么”或“找到完美的目的地”可以帮助引导你的用户并形成他们对所能找到的东西的期望。

https://www . algolia . com/doc/guides/solutions/gallery/animated-placeholder/

  • 在搜索栏 保留最后一次查询。当用户查看搜索结果页面时,参考他们过去的搜索查询可能会有所帮助。如果他们没有找到他们要找的东西,他们可以快速返回并修改搜索结果。
  • 使搜索栏可见。 用户不应该非得搜索搜索栏。搜索栏需要足够大,这样才不会被网站的其他部分遮挡。考虑相对于网站其他部分的颜色和视觉对比,这样它就不会意外地融入其他部分而丢失。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

2。搜索栏的位置

用户应该能够导航搜索,不管他们在你网站的什么位置。位置的一致性允许他们浏览不同的页面而不会迷路。以下是一些需要记住的提示:

  • 在搜索栏的位置上要有策略 。搜索栏越突出,用户越有可能使用它。用户通常希望在网页的左上角或右上角找到用于搜索的按钮或图标。然而,根据不同的用例,你可以选择让搜索栏更加突出。无论你做什么,不要隐瞒!
  • 把它放在每一页的同一个地方 。不管页面的上下文如何,搜索栏应该总是可用的。当他们导航到不同的页面时,搜索栏应该在他们上次使用它的相同位置,以确保他们可以快速回到他们的探索过程。一致性是关键,因为好奇的用户会想要在不同类型的内容之间跳转,搜索体验应该帮助他们这样做。

3。搜索栏的功能和能力

最终,搜索栏的功能将用户与他们正在寻找的东西联系起来。确保你的搜索栏不仅能提供用户期望的功能,还能提供强大的体验,促进搜索和发现:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
https://www . algolia . com/doc/guides/solutions/gallery/predictive-search-suggestions/

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

如何实施伟大的搜索 UX

建立一个搜索栏意味着超越用户的期望。您需要一个搜索服务提供商,它提供强大的功能和机会来调整搜索以适应您的业务用例。阅读我们的电子书“ 搜索和用户-企业关系 ”,了解了解你的用户如何帮助你推动搜索改进和定制搜索体验。

30 天将我们的爬虫性能提高 50 %|

原文:https://www.algolia.com/blog/engineering/30-days-to-improve-our-crawler-performance-by-50-percent/

高性能应用程序的速度与其最慢的组件一样快。这在依赖第三方 API 组件的并行分布式系统中尤其具有挑战性。虽然外部组件可能很快,但组合它们需要仔细的设计、实验和测试,以避免不必要的低效。要实现最低限度的快速性能,但最具竞争力的产品需要远远超过最低限度。

然而,不管一个软件过程有多好,总会有另一个客户带着一个独特的用例出现——你会发现还有更多事情要做。这种情况发生在我们的 Crawler 中,这是一种使用并行和分布式计算架构来抓取大量网站的产品,在运行中提取和构建信息,使每个网站都可以搜索。

这篇文章是关于我们如何分析和改造我们的应用程序爬虫的内部,寻找瓶颈,最小化资源,简化任务等等,以优化这个复杂的并行和分布式软件的处理。

技术概述

在深入研究之前,先快速浏览一下我们的技术堆栈。

后端完全由 NodeJS 和Typescript 提供动力,托管在**【GKE】**(Google Kubernetes 引擎) 云 SQL 。我们使用 memorystore 进行存储,使用 RabbitMQ 进行队列。

在开始之前,我们使用的是 1 VCPU 和 4GB 内存的小型 N1 机器,主要是因为主要的计算是由我们的工作人员完成的,这些工作人员非常轻便并且可以水平扩展。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Simplified view of our infrastructure

如你所见,这是一个相当标准的架构,由一个经理来安排工作,工作人员的数量随着负载的增加而增加。因为这个基础设施的所有其他部分都是由谷歌管理的,我们认为我们的大多数问题都会出现在管理器中,这是一个 SPOF(单点故障)。

将爬虫视为分布式系统

自 2 年多前成立以来,我们的定制爬虫已经成长了很多。从 localhost MVP,到 Heroku,然后是一个挑战性的 GKE 迁移,爬虫的能力已经扩展,我们已经看到企业客户的稳定增长。

一夜之间增长 2 倍并不容易:高度并行的代码和基础设施带来了巨大的挑战。但是也有很多优化的方法。

通过压力测试识别潜在瓶颈

管理一个爬虫不是一件简单的任务。该过程严重依赖于移动和脆弱的组件、队列、数据库存储、网络本身、水平扩展、web 标准等。为了帮助我们完成这项正在进行的任务,我们正在使用数据狗和 GKE 密切监控我们系统的所有部分。一切都是用防御性编程和任何事情都可能在任何给定时间失败的思想构建的。当网络变得不可靠时,或者当我们在后端执行用户定义的 JavaScript 代码时,这被证明是非常有用的。 因此,我们借此机会实施了 端到端基准测试 ,以便我们能够发现新的罪魁祸首,突出潜在的瓶颈,并规划未来的改进。

为了做到这一点,我们使用了我们的暂存环境,并编写了一个脚本来在很短的时间内创建和触发几千个爬虫。虽然这个数字起初可能看起来不高,但每个爬虫实际上可以同时发现、获取、提取和 索引 数百万个 URL。

衰快

因为我们对这些新功能相当乐观,所以我们一开始就没有计划失败。这当然意味着一切很快就会失败。

我们在开始时学到了非常好的东西,并且很好地提醒我们,偷工减料可能会在多年后伤害到你:我们的 Kubernetes 集群是手动创建的,因此我们的试运行和生产出现了相当大的差异,无论是有意的(为了节省成本)还是无意的。 第一次测试失败,因为集群无法扩展并承担我们当前生产中的负载。所以第一批几乎没用。 然而,这被证明是同步我们的配置并将 Terraform 放回我们的路线图中的好时机。Terraform 有助于编排复杂的基础设施并随意复制,对 Kubernetes 尤其有用,使它成为我们(以及管理一系列服务的每个人)真正的游戏规则改变者。

不成材难

尽管开局不利,但我们仍然对基础设施的整体稳定性充满信心。但事实证明,这一过程中失败的地方更多。虽然这可能伤害了我们开发人员的感情,但这是最好的。以下是我们失败的原因、我们学到的东西以及我们改进筹码的地方。

减少 RabbitMQ 中的队列占用量

我们集中使用 RabbitMQ 在我们的多区域集群中传输我们的工作。工作人员订阅单个扇出队列,该队列对作业进行负载平衡,GKE 使用这些指标根据负载自动扩展我们的集群。没什么特别的,但它工作得很好,我们对这个非常强大的软件有十足的信心。

然而,当在这些工作器中获取和提取页面时,作业也被发送回不同的索引服务,该服务将作业推送到我们的监控堆栈,并最终到达 Algolia。这个索引步骤是按爬虫分开的,这意味着我们有 N 个客户的 N 个队列。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

通过这种设置,我们可以根据负载来扩展工作线程(CPU 最密集的任务),但在这一步之后独立控制每个爬虫,这样我们就可以计算全局范围,而不需要共享内存(例如,索引的全局速率限制、最大 URL、有效负载验证)。

我们几乎不知道大量的空队列会对 RabbitMQ 产生巨大的影响。 所有队列都在消耗大量内存和 CPU——即使在空闲时 。在基准测试期间,我们很快达到了一个不合适的上限,这是我们以前认为无法达到的。

幸运的是,我们想到了一个解决方案:使用带有 内置 TTL 特性 的短命队列。 然而,随之而来的第二个问题是:队列配置在创建后不能修改,这个问题在生产中给我们造成了很大的打击,因为在开发过程中,我们总是从头开始重新创建整个队列。 删除旧队列可能需要相当长的时间,因为我们开发人员的目标是聪明地偷懒,我们找到了一个完美的天真解决方案,并将 爬虫版本放在队列名称 中。 这样,我们现在每次部署都是从一个“全新的”环境开始,RabbitMQ 只需在几分钟后自动处理旧队列。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

The drop in CPU consumption after the TTL was applied.

解决方案:

  • 使用非常短的实时队列(15 分钟),即使我们知道我们每天都要处理事情
  • 版本队列名,这样你就可以随时丢弃并从头开始重新创建一切

提高 Kubernetes 的成本和资源使用率

Kubernetes 是一个需要掌握的非常复杂的系统,在爬虫团队中,我们不是基础设施专家。当我们在大约 2 年前进行迁移以实现更好的自动扩展时,我们主要关注的是在保持成本可接受的情况下简单地让事情运转起来。 在进行这些基准测试时,我们意识到小型机器并不适合所有情况。

成本不会线性增加,也就是说,机器越大,成本越低。Kubernetes 总是使用少量的 CPU 和内存,因此****机器越大,占用空间** 就越小。**

**总的来说,在迁移之后,我们 降低了我们的基础成本****浪费了更少的 CPU 并提高了我们的性能 仅仅通过改变一些需求。

解决方案:

  • 我们迁移到 E2 高 cpu 成本优化机器 ,没有硬盘
  • 我们更改了所有资源要求,以允许 Kubernetes 玩更好的俄罗斯方块游戏(注意:默认情况下,Kubernetes 调度程序不会尝试填满 100%的节点)

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Total RAM consumption with a 50% improvement

无服务器和可扩展性

在应用了相同的配置后, 第二个基准测试也很快失败了 因为我们没有正确地考虑规模。 在 Kubernetes 中,即使你现在“无服务器”,你仍然被捆绑在一个水平扩展策略、磁盘扩展策略、CPU 扩展策略等上…并不是所有的东西都会神奇地扩展,成本通常会随着扩展而扩展——你可能会依赖像 Postgres 或 Redis 这样的托管服务,它们还没有配置为承担巨大的负载。

这意味着配置一切,使其具有更好的最小值、更宽松的最大值、基于托管服务负载的自动扩展,以及无处不在的高可用性(区域或地区性)。

在我们的设置中,这意味着:

尽管 99%的时间负载都是“正常”的,高可用性、区域复制和基准测试——你需要确保你能够处理大峰值——加起来就是初始成本。

在 GCP,这意味着每个月要多花几百美元,如果你有 1:1 分期付款,这个数字还要翻倍。因此,对一切进行良好的测试和配置可能会花费很多,但这是最终让客户满意所要付出的隐性代价。

减少 DNS 延迟和错误> 94%的性能提升

在你遇到问题 之前被 高度忽视的东西,就是 DNS 栈。通常这是一些不需要进一步优化的低层次的东西。但是一旦你关心网络和 大规模高性能 你就会遇到大麻烦。

一旦基础设施得到纠正,基准开始运行,我们就开始监控 Datadog 仪表板中的一切,我们注意到 DNS 问题 增加 。在一个非常强大的环境中,GCP 让我们感到非常惊讶,对网站的简单调用都失败了,更糟糕的是,我们的 Algolia 调用也失败了。

错误隐晦,一点帮助都没有,像*【connect EADDRNOTAVAIL 95 . 211 . 230 . 144:443】【getaddrinfo enot found 8j 0 ky 6j 9 fn-1 . algolianet . com】【连接超时】* 。 显然,我们知道 Algolia 已经启动并运行,我们试图在本地重现这个问题,但由于我们个人电脑的限制,这几乎是不可能的。 这些错误只在高负载时出现,在正常使用情况下我们无法重现。

如前所述,这是一个普遍被忽视的话题,所以我们以前自然没有太关注它。但是很明显,我们的 HTTP 堆栈没有得到适当的优化。

经过大量的时间调查我们终于发现了几个不同的问题**😗*

**第一个修复是通过在所有 HTTP 调用中始终使用{ family: 4 }来强制 IPv4 解析。这个简单的修复极大地提高了我们的解决时间和成功率。

http.get({ family: 4, ... }, cb);

第二个更大的修正是在整个系统中使用一个共享的 HTTP 代理,只打开一个 TCP 池。这意味着将代理传递给 algoliasearch 客户端,以便进行简单的获取。

// agent.ts
export const httpsAgent = new https.Agent({
  keepAlive: true,
  timeout: 60000,
  maxFreeSockets: 2000,
  scheduling: 'fifo',
});

// algolia.ts
import algoliasearch from 'algoliasearch';
import { httpsAgent } from '../http/agent';

export const requester = createNodeHttpRequester({
  httpsAgent,
});
const client = algoliasearch(appId, apiKey, {
    requester,
});

关于 Kubernetes 中的 Alpine 映像的最终修正是简单地改变需要它的部署/状态集上的 dnsConfig 选项。

apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: crawler
spec:
  replicas: 1
  template:
      dnsConfig:
        options:
          - name: ndots
            value: '1'

在部署了所有这些修补程序后,系统从每天 90 万个 TCP 连接减少到每天仅 1.2 万个。 少浪费 99%的 CPU,少浪费时间,少浪费金钱。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

TCP connections requested per day

更令人惊讶的是,我们看到索引记录时到达 Algolia 的时间大幅减少, 从平均每次调用 1.5 秒减少到稳定的 0.1 秒性能提升高达 94%。对于我们认为已经足够快的东西来说,这已经很不错了。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Average duration to saveObjects call to Algolia.

解决方案:

  • 重用 HTTP 代理
  • 强制 IP v4 解析

其他改进

Docker 图片尺寸和构建时间改进

当我们构建 Docker 映像时,我们通常会与 Docker 文件进行充分的斗争,以避免过度优化,尤其是在构建时间很长的情况下。然而,有很多问题,特别是层、基本映像、文件系统快照等。在这一点上值得研究。

我们在回顾中注意到两件事:

  • 我们的形象太大了
  • 我们的图像没有正确使用缓存

为什么要在意太慢或者太大的图像?嗯,图像大小增加了 Kubernetes 的产卵时间,因为优化的图像加载更快,所以启动更快。这也意味着更快地构建和推出补丁。所以双赢。T17

为了改善这一点,我们没有复制整个 WORKDIR,而是使用了只先复制 package.json 的简单技巧,安装 deps,然后复制其余的,这样 Docker 就可以在什么都没有改变的情况下缓存 node_modules 文件夹。我们的流程是每周升级一次依赖项,这意味着构建可以在剩下的日子里使用缓存。

FROM node:14.15.1-alpine AS base
ENV NODE_ENV production

# Install dependencies
# python make and g++ are needed for native deps
RUN apk add --no-cache bash python make g++

# Setup the app WORKDIR
WORKDIR /app/crawler

# Copy and install dependencies separately from the app's code
# To leverage Docker's cache when no dependency has change
COPY package.json yarn.lock ./
COPY pkg/crawler-manager/package.json pkg/crawler-manager/package.json
[...]

# Install dev dependencies
RUN yarn install --production=false --frozen-lockfile --ignore-optional

# This the rest of the code, no cache at this point
COPY . /app/crawler

现在映像仍然太大,因为它包含了构建最终映像所需的所有 node_modules(例如,Typescript、webpack、babel…),此时 大约 600mb 。在 Kubernetes 中创建的每个工人都在绘制这个大图像,因此极大地增加了启动时间。

由于采用了 多级构建,我们将尺寸缩小了>5 倍。 在最后加上这个简单的加法,图像 现在只有大约 100mb (仍然很大,但是好得多)。

FROM node:14.15.1-alpine AS base
ENV NODE_ENV production

# Install dependencies
# python make and g++ are needed for native deps
RUN apk add --no-cache bash python make g++

# Setup the app WORKDIR
WORKDIR /app/crawler

# Copy and install dependencies separately from the app's code
# To leverage Docker's cache when no dependency has change
COPY package.json yarn.lock ./

# Install dev dependencies
RUN yarn install --production=false --frozen-lockfile --ignore-optional

# This the rest of the code, no cache at this point
COPY . /app/crawler

# Build and keep only prod dependencies
RUN true \
  && yarn build \
  && yarn install --production=true --frozen-lockfile --ignore-optional

# Final Image
FROM node:14.15.1-alpine as web
USER node
WORKDIR /app/crawler
COPY --from=base --chown=node:node /app/crawler /app/crawler
EXPOSE 8000

前端捆绑尺寸

你可能认为大规模的性能只涉及到改进后端代码,但是一个缓慢的用户界面在用户心目中意味着一个缓慢的产品。对我们来说,更多的客户预期意味着为更多的人提供静态文件,这意味着大量的捆绑包,这意味着大量的加载时间、糟糕的 UX 和大量的带宽成本。 因此,虽然后端性能是我们的主要关注点,但我们也借此机会开发了前端产品包。关于如何启用树抖动和优化 webpack 捆绑包有很多细节,所以我将简单总结一下我们所做的工作。

多亏了[web pack-bundle-analyzer](https://www.npmjs.com/package/webpack-bundle-analyzer)你可以很快拥有你的 Javascript 代码的地图,并找到应该在那里或不在那里的东西。我们发现我们的代码是包大小的 10%,有十几个页面和数百个组件。然而,我们的主要依赖项:React.js、Monaco Editor(也就是 vscode editor)、React Feather、Prettier(与 Monaco 结合使用)等构成了有效负载的主要部分,并不是所有的东西都经过了正确的树抖动和优化。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

以下是我们的建议:

  • SVG 会占据相当大的空间;仅仅通过正确压缩它们,我们就节省了将近 500kb
  • " module “:ts config . JSON 中的” esnext "需要启用树抖动
  • 有些封装不是树摇动的,但是您可以使用NormalModuleReplacementPluginnull-loader 轻松丢弃该部分
  • 当你不能减少你的包的大小时,Webpack 块肯定会有所帮助
  • 如果使用 nginx,gzip:on不足以启用 gzip 压缩,还需要指定gzip_types

经过几次调整,我们从 7.6MB (1.8MB gzipped)压缩到 5.9MB (1.2MB gzipped),因此大小减少了 33%。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Bandwidth cost, with sharp drop at the end of September

结论

我们的爬虫一直以稳定性第一、性能第二为宗旨,因为 我们相信人们更需要一个可靠的工具 而不是一个快速失效的工具。然而,我们错过了许多轻松的性能胜利,这些胜利从来没有成为我们的首要任务,因为事情只是在工作。

拥有一个新项目和新方向有助于将这些主题放回路线图中,也有助于我们为我们的产品构建更美好的未来。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Number of running crawlers with Netlify spike at the start of October

我们现在不仅更有信心,而且自修复以来,我们已经增加了我们的负载,我们有信心在未来一年内实现 10 倍的增长——这是由我们增强的技能和对任何并行和分布式系统的特定需求的理解以及实现 50%性能提升的成功推动的。****

2023 年黑色星期五准备工作的 5 个考虑事项

原文:https://www.algolia.com/blog/ecommerce/5-considerations-for-black-friday-readiness/

很难想象在距离上一个黑色星期五不到 4 个月的时候还会有黑色星期五,但根据最近的2023 年电子商务搜索趋势报告 ,这正是许多零售商和电子商务公司正在做的事情。许多人已经开始寻找创新的方式来为即将到来的假期做准备。

黑色星期五自动化和规模化

黑色星期五对整个组织提出了巨大的要求。它也变成了一个移动的目标。2022 年,消费者和零售商在黑色星期五早早开始。交易提前了一个多月。消费受到大幅折扣的推动,这是消费者在跳过亚马逊(Amazon)和塔吉特(Target)等主要零售商的早期假日交易日之后等待的东西。

假日折扣和降价在 12 月销售额同比增长中发挥了关键作用,但它们不足以吸引消费者从 11 月开始表现出改善。但是,这并不意味着每个人都立即购买。与 2021 年疫情的高峰期相反,消费者愿意在旺季为商品支付更多费用,因为担心零售商会耗尽库存,2022 年的消费者非常清楚库存过剩,并决定在等待最新和最大的交易时捂紧钱包。

这种动态——可能需要发布活动,并根据竞争对手、购买趋势、库存盛宴和饥荒做出快速改变——给公司带来了压力,要求他们找到应对挑战的解决方案。调查受访者表示,他们已经开始寻找自动化劳动密集型工作流的方法,帮助他们扩展并在移动中迭代。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

黑色星期五技术注意事项

鉴于黑色星期五准备工作的复杂性,我们整理了一些值得考虑的建议。

  • 保持一致性
  • 混合人工固化和人工智能
  • 胖头、矮胖中间和长尾优化
  • 精确的即时分度
  • 正常运行时间的性能和可扩展性

保持一致性

假日销售不仅速度快,而且充满活力,不断变化。很容易记住更新一件事,而忘记另一件事。除了寻找管理创意的数字资产管理解决方案,商家还需要考虑信息在哪里以及如何共享。

无论有人在使用你的搜索栏还是浏览产品列表页面(PLP ),黑色星期五的促销活动都需要保持一致,以最大限度地增加销售机会。这是搜索技术可以帮助的一个领域。许多 PLP 是完全动态的——它们实际上是查询——就像现场搜索结果一样。换句话说,你所拥有的系统应该能够将黑色星期五的销售商品推至搜索结果和 PLPs 的顶端。知道你准备的内容会被送到你的品牌买家购物的任何地方,这应该会让你松一口气。

哦,别忘了手机!移动搜索和 PLP 设计和交付需要快速响应,以最大限度地增加移动或沙发上买家的销售机会!

融合人工策化和人工智能

AI 在特定用例中表现非常出色。机器学习算法可以非常擅长预测和个性化。它可以大大增强您的团队正在做的工作,并以闪电般的速度计算结果,以便在正确的时间向正确的人提供正确的报价。尽管如此,有些时候你会想要掌控局面。

例如,您可能希望指导您的商品销售解决方案在目录的特定部分应用基于人工智能的优化,但手动管理其他区域。人工智能非常适合基于实时数据提升结果,例如将最畅销或高利润的商品推至顶部。另一方面,规则有助于创造身临其境的品牌体验和控制赞助项目。因此,在评估人工智能解决方案时,询问控制和灵活性。

胖头、矮胖腰、长尾优化

这个季节,你的买家会在你的网站上搜索“给娜娜最好的围巾”以及其他长尾和不常见的问题。这些长尾查询可能占你网站查询的 50-70%。它们难以预测,没有简单的方法来为它们写规则和同义词(比如“娜娜”是“奶奶”的同义词等等。).

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

更广泛地说,人们越来越多地按照自己的想法进行搜索,因此搜索解决方案应该能够解读查询意图,以返回相关结果。

当谈到黑色星期五的扩展时,搜索解决方案需要处理这些多种类型的查询——这就是端到端人工智能发挥作用的地方。

  • 查询理解 :搜索引擎需要自己解析查询。人工智能查询理解模型,如自然语言处理(NLP) 将使用句子编码、错别字容忍度和词汇化等功能来准备查询以供检索。
  • 检索 : AI 检索就是矢量搜索发挥作用的地方。向量是人工智能理解背后的技术,它们允许访问者按照他们的想法进行搜索。例如,即使你的网站上没有“红色闪闪发光”这个词,人们也可以输入“红色闪闪发光的衣服”并得到亮片衣服。向量是好的,但是对于规模,你也需要它有神经散列和关键字。这种组合有时被称为混合搜索,这是优化大范围查询的唯一方法——从肥头到长尾。
  • 排名 : AI 排名强化学习等能力会不断将更好的结果推至榜首。“更好的结果”是指获得最多点击、转换、购买、评级或其他积极信号的结果。

对于黑色星期五规模,人工智能“混合”搜索可以改善所有三种搜索的发现——从肥头到长尾。人工智能搜索不仅显示最相关的结果,还扩大了产品发现的足迹。嘿,谁不想让消费者更容易地要求 Alexa、谷歌或 Siri“在我的购物清单上为 nana 添加一条漂亮的围巾”,并将其放在我的[品牌名称]篮子中呢?

即时标引

许多零售商和市场每晚都会更新他们的搜索索引。有时每小时一次。更新对于反映最新的产品品种、价格、新的 SKU、库存水平等至关重要。您的搜索提供商需要能够处理频繁和大规模的变化,这也可能包括曲线球,如模式更新、客户评论、新商家等。,它需要在不影响搜索性能的情况下进行这些更改。在选择搜索提供商时,最好测试一下索引功能,以确保他们能够胜任假期的工作——这是对大规模速度的真正考验。请记住,如果你的买家找不到它,或者找到了不可用的东西,这不会带来好的结果。

正常运行时间的性能和可扩展性

黑色星期五给你所有的系统带来了巨大的限制。他们中的许多人要么无法扩展,要么需要准备不人道的开支。考虑这样一种架构,它允许企业在不增加 10 倍系统调整成本的情况下进行扩展。现代云体系结构允许您不必手动增加和减少专用基础架构。

在黑色星期五,网络延迟给零售商带来了真正的问题,因此,当务之急是通过现代基于云的架构,在网站上的所有服务中找到获得更快响应时间的方法。例如,基于 API 的搜索平台(如 Algolia)是限制您的商务和内容平台流量的有效方法,不仅适用于搜索用例,也适用于买家浏览 PLP 的情况。

黑色星期五可能感觉还很遥远,但它以一种令人惊讶和偷偷摸摸的方式很快就到了。当你为大销售活动做准备时,找到帮助你扩大规模和最大化利润的解决方案是很重要的。下载一份 2023 年电子商务搜索趋势报告 ,或 联系我们 了解更多关于 Algolia 可能提供帮助的信息。

你不应该忽视的 5 个电子商务搜索趋势

原文:https://www.algolia.com/blog/ecommerce/5-e-commerce-search-trends-you-shouldnt-ignore/

在当今的网络世界,用户的期望值比以往任何时候都高。消费者知道他们想要什么,他们现在就想要那些东西 。如果网站访问者不能立即找到他们需要的东西,他们会很快离开页面,使网站失去潜在的销售机会。

一个优秀的电子商务网站搜索可以快速有效地引导客户找到相关产品。网站搜索是电子商务用户体验的一个重要部分,它推动了转化率、参与度以及最终的收入。电子商务网站搜索根据用户和行业需求不断变化。在这篇文章中,我们将讨论每个电子商务网站应该知道的趋势,以推动网站搜索的最大价值。


5 电子商务网站搜索趋势

消费者的在线行为和电子商务的格局已经发生了巨大的变化。随着收购比以往任何时候都难,每天都有更多的竞争对手进入该领域,提供有意义的体验已成为电子商务公司的优先事项。以下是电子商务搜索发生变化的五种方式:

1。客户从多个平台搜索

如今的用户通过各种设备访问网站,包括手机、。通常情况下,企业会投入时间和金钱来改善在线网站搜索体验,而忽视其他平台。无论用户从哪里开始搜索,他们只会继续与品牌互动,如果这样做很容易,甚至很愉快的话。

因此,跨平台优化电子商务网站搜索比以往任何时候都更加重要。无缝、集成和相关的搜索体验对于留住和吸引购物者以及推动销售和转化至关重要。

2。更少的复杂搜索功能

在电子商务搜索中,复杂的多条目搜索功能在很大程度上已经成为过去。像 高级搜索 这样的复杂搜索功能允许用户填写多个字段,以在详细的搜索表单中指定感兴趣的项目、产品或服务。复杂的搜索表单仍然在学术数据库或网站中使用,在这些网站中,需要多个参数来充分搜索数据库,如航空公司网站。在其他大多数情况下,用户习惯于 的简单搜索

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

客户习惯于响应迅速的搜索界面。最终,高级搜索可能会耗时、令人沮丧,而且最终毫无结果。

取而代之的是,电子商务网站搜索工具拥有强大的搜索引擎,其相关性和排名规则可以为企业和客户定制。这意味着每次搜索都可以返回有意义的结果,而用户不必确切知道他们需要什么。此外,网站还允许用户通过过滤器和方面来细化他们的搜索,这可以帮助客户比使用高级搜索更快地缩小他们的关注范围。

3。帮助用户搜索

用户并不总是知道他们需要什么,即使他们知道,他们有时也不知道要搜索的最佳关键词。当用户确实知道要搜索什么时,他们经常会犯错误或打字错误。

随着电子商务网站搜索变得越来越先进,它对用户错误的容忍度也越来越高,并且更有能力帮助客户找到他们需要的东西。以下是电子商务网站搜索帮助引导客户搜索体验的几种方式:

  • **自动完成—**当客户键入时,自动完成(或自动建议)会显示已知会返回结果的热门查询。 为 客户指定自己查询。这导致了更多成功的搜索,销售额增加了 24%,这也加快了搜索过程,因为客户可以点击最匹配的建议。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • 相关搜索和产品建议—流行的搜索建议不仅对用户体验有帮助和强大的功能,而且在电子商务网站上也变得很常见(也很常见)。这一功能为在线零售商提供了一个真正的机会,他们可以向搜索类似商品的用户显示他们最受欢迎的产品或内容。它帮助客户发现新事物,并为交叉销售和追加销售创造机会,所有这些都在搜索体验中。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
https://www . algolia . com/doc/guides/solutions/gallery/predictive-search-suggestions/

4。每个客户的个性化搜索结果

虽然两个不同的客户可能在搜索栏中输入相同的查询,但他们可能不会寻找相同类型的结果。越来越多的电子商务网站正在转向个性化结果,这使得以前的行为、用户档案和偏好能够影响客户看到的相关内容或产品。

这非常有价值,因为用户每次与你的品牌互动都会获得更好、更相关的搜索体验。

但是不仅仅是消费者极大地受益于个性化。研究显示,48%的消费者在体验个性化时会花更多的钱。利用个性化有助于满足用户的期望,从而增加参与度和转化率。用户也会在你的网站上停留更长时间,从而带来更多的 产品发现 和潜在销售。

5。搜索栏的标准化

随着搜索成为电子商务网站的基石,企业开始意识到采用一些基本设计最佳实践的重要性。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

一些有助于简化用户体验的实践包括在每个页面的相同位置放置搜索栏,包括一个放大镜以获得更好的可视性,以及在栏中包含占位符文本(或缩微文本)以鼓励用户搜索。

电子商务搜索的未来

随着技术的发展,用户的期望只会继续增加,这意味着他们会想要更加个性化和无摩擦的体验。电子商务的未来是光明的,这些即将到来的趋势即将出现:

身临其境的体验

Gartner 预测,到 2022 年, 70%的品牌 将在消费者身上测试沉浸式技术。对于电子商务网站来说,这意味着用户有机会尝试虚拟产品试穿或 AR 过滤器,让他们在购买前看到家中的一件家具。这种未来派的个性化将增加收入,并以一种新的令人兴奋的方式吸引用户。

虽然身临其境的功能看似遥远,但许多品牌已经开始利用这项技术进行转化。例如,耐克在 2017 年开始使用增强现实 让购物者在网上购物前虚拟试穿鞋子。随着这项技术越来越容易被其他电子商务品牌使用,身临其境的体验无疑将成为许多在线购物者的一个基本特征。

视觉搜索

虽然视觉搜索是一种趋势,但仍处于应用的早期阶段,其在电子商务中的潜力不容忽视。

视觉搜索允许用户在搜索功能中输入照片、截图或互联网图片来查找产品。例如,如果一个人喜欢他朋友的夹克,他们可以拍一张照片,然后在一个网站上搜索相同的夹克(或类似风格、图案或颜色的夹克)。

这种功能为在线零售商打开了一扇新的大门,因为他们的客户将能够以更具互动性的方式与他们的品牌互动。电子商务公司获得的分析将提高他们对增长趋势和用户偏好及风格的理解。

语音搜索

随着手机、语音助手和智能音箱使用的增加,语音搜索已经越来越受欢迎。然而,在被客户完全采用之前,还有许多挑战。

这部分是由于围绕 UX 的难度水平,因为讲话有时会比打字更少】,而且对人类交谈的期望很难达到。速度对于流畅的对话至关重要,任何延迟都会破坏搜索体验。

随着用户越来越习惯对着自己的设备说话——甚至在公共场合——我们可能会看到语音搜索的使用增加。未来,语音搜索将是被动和主动的。公司将需要根据自然语言请求来定制搜索和内容,以使用户体验尽可能友好。电子商务网站也将受益于了解用户和他们的偏好——他们最近在问什么,他们住在哪里,当地天气等等。

语音搜索的未来将在很大程度上取决于服务提供商、卖家和用户对其可能性的投资和购买程度。

用现代有效的电子商务搜索取悦您的客户

电子商务搜索通过品牌和业务 KPI 推动客户关系,因此为客户提供现代、强大且相关的网站搜索以跟上趋势和行业挑战至关重要。

Algolia 以创新为动力,电子商务企业可以即时获得更新和升级。在我们的电子书“ 框外搜索 ”中,了解更多有关 Algolia 如何应对关键电子商务挑战的信息

增加网站搜索分析点击的 5 个理由(和代码)

原文:https://www.algolia.com/blog/product/5-reasons-to-add-clicks-to-site-search-analytics-and-code-to-do-it/

点击(和转换事件)捕捉用户行为和意图不应该是事后的想法。你在网上的成功取决于你以直接和即时的方式跟踪和回应用户的能力。这种直接性提供了关于他们意图的无价 洞察力 。除了打电话问他们,你最好的选择是将点击分析整合到你的网站搜索分析中。

正如您将在下文中看到的,通过网站搜索分析以及点击和转化数据获得的洞察力构成了更高级和更具竞争力的搜索功能的基础,这些功能让您能够利用您的搜索工具获得乐趣和利润。

好处:实现出奇的简单:在本文中,我们包括了所需的单行代码

站点搜索分析,点击分析,洞察 API:为什么你应该阅读这篇文章

  • 了解 网站搜索分析点击分析的区别
  • 了解点击分析对于动态相关性、A/B 测试、推荐和个性化的必要性
  • 了解使用我们的 Insights API 实现点击分析有多简单

比较网站搜索分析和点击分析

网站搜索分析 提供关于用户搜索内容和最常用术语的见解。但是 搜索分析 对于你的网站来说只是故事的一部分;它错过了用户旅程的很大一部分。

点击分析 从那里拿起并告诉你你的用户做了什么 之后他们执行搜索——他们是否点击或查看项目,以及他们是否转换。

什么是点击分析?

点击分析 收集用户搜索时查看和点击的详细数据 ,让您准确了解他们的产品兴趣和行为。在这方面,它类似于Google Analytics,但其用途也不同于 GA

点击分析对提高你的 网站搜索 至关重要,因为它给你 关于你的目录的洞察力 ,这是你根本无法通过任何其他方式获得的。它会根据用户购买、添加到购物车、收听或观看的内容生成 转换率 。与转换分析一起,它提供并实现了 ML/AI 驱动的功能,如 个性化A/B 测试动态重新排名 ,所有这些都使您能够产生与不相上下的消费级搜索体验

使用 Insights API,您只需一行代码就能实现所有这些。

添加点击分析到你的网站搜索分析的 5 大理由

在深入技术细节之前,让我们看看点击分析提供了什么。可以:

1。查看一段时间内的趋势

实现点击分析可以让你 保持对指标 的跟踪,包括点击率(CTR)、转化率、无点击率,所有这些都揭示了用户意图。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • 点击率 意味着一个条目被点击的搜索百分比高。它表明客户参与度。

  • **转换率 意味着某个项目被转换的搜索百分比很高。这表明,用户可以找到他们正在寻找的,他们想转换。**

*** 无点击率 意味着没有产生点击的查询百分比高。它表明,项目可能不再是趋势,或在市场上获得较少的牵引力。

**这些指标衡量了你当前的表现,并帮助你迭代和改进你的搜索解决方案。随着网站搜索分析的持续流动,加上点击和转换,当你改变相关性设置时,你会看到这些指标如何随着时间的推移而增长。

2。融入“群众的智慧”(有一点人工智能的帮助)

——一种基于最近点击调整结果顺序的功能——是点击分析如何直接影响用户搜索和发现体验的显著例子。此功能会对用户最近的行为做出响应,并将您的最佳表现项目推至用户结果的顶部。

例如,如果一个项目出乎意料地出现趋势,动态重新排名会抓住该趋势,并将该项目的位置提升到顶部。流行艺术家的新电影和音乐一发布就自动被送到顶端。季节性和突发性的时尚趋势也得到推动。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

3。实现个性化搜索体验

当您将 用户特定信息 添加到您的点击和转换事件中时,您可以利用您的分析数据来实现个性化:这是一种广泛使用的功能,可以根据用户对特定方面或类别的个人偏好来提升产品。个性化将特定于用户的上下文添加到查询中,并使转换更有可能。

4。改进搜索结果并定位问题查询

每次查询的点击率和转换率有助于您找到表现不佳的查询。通过 深入了解您的点击分析 ,包括点击 位置 ,您可以准确了解您的用户如何与他们的搜索结果进行交互。这些数据在 Algolia 的仪表板上很容易查看,应该可以帮助您分析特定的查询并优化相关性,或者创建 规则 来提高它们的性能。

5。测试用户如何与优化互动

除了衡量特定查询的成功,您还可以更改引擎中的设置,并衡量其对整体成功的影响。Algolia 处理一个 A/B 测试 的所有变量切换。你要做的就是设置好你想改变什么,改变多久。

持续测试您的相关性可以微调您的解决方案设置,并确保直观的相关性和 个性化策略。

点击分析和洞察 API:免费使用,昂贵不使用

网站搜索分析和点击分析不是成本与收益的问题。点击分析是免费的。我们的 Insights API 公开了一组简单的方法来捕捉用户的点击;就时间和资源而言,成本可以忽略不计。而且,正如您将看到的,实现起来非常简单。

上述五项关键优势非常巨大,使得点击分析成为每个搜索解决方案的必要组成部分。从用户那里获得关于他们的行为、兴趣和期望的直接而准确的反馈有助于你衡量你的搜索解决方案的成功并提高客户保持率。

如何使用 Insights API 实施点击分析【技术🤓]

提前了解实现给定组件的复杂性(或者在这种情况下,简单性)总是有用的。

所以你会很高兴地知道,有了点击分析,你只需要采取一个行动:发送用户 事件 到 Algolia。

您可以发送这些事件:

  • 点击
  • 转换
  • 刻面选择
  • 页面或产品浏览量

一旦你开始发送这些事件,Algolia 就会完成剩下的工作。

点击分析是关于收集关键用户事件以建立用户活动数据库,然后分析和综合这些数据以得出关于用户行为、需求和偏好的准确见解。

当你有大量的流量时,在很短的时间内,你的分析数据将产生前面讨论过的好处。

如何发送事件?我们的 Insights API 的快速概述

很简单,Algolia 需要用户旅程中缺失的部分:当用户从搜索中得到结果时,他们做了什么。

第一步是告诉 Algolia 你将在用户执行查询后发送事件。如下图所示, Algolia 为每一组结果返回一个queryID ,您可以使用它将查询与后续的点击事件关联起来。该图概述了当用户执行查询、查看结果、单击项目并将项目放入购物篮时发生的情况。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

要轻松地将这些信息发送到 Algolia,您有许多选择(API 客户端或前端库)。最重要的部分是决定哪一个最适合您的技术堆栈。

你用哪个库或者 API 来发送事件?

Algolia 让发送事件变得尽可能简单,您选择的路线将取决于您的技术能力和您想要做的事情。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

您可以根据您是否使用 即时搜索 以及您希望从前端还是后端发送事件来决定:

  1. 你在前端使用即时搜索
    • 新增! 在搜索结果页面使用 洞察中间件进行事件 (需要 InstantSearch.js v4.8.3)
    • 使用 Insights 客户端库处理事件 和任何其他需要事件的页面,如结账或意愿列表页面,
    • 注意: 我们有普通 JavaScript、React、Angular、Vue、iOS 和 Android 的即时搜索版本。
  2. 你是 不是 在你的前端使用即时搜索,但是你想从前端发送事件。
  3. 你是 不是 使用 InstantSearch,你有一个后端实现,你想从前端发送事件
  4. 你是 不是 使用 InstantSearch,你有一个后端实现,你想从后端发送事件

我们建议您使用 Algolia 的即时搜索库 ,让即时搜索管理对我们的Insights API的调用。也就是说,Insights API 非常简单,只需要一个调用就可以创建点击事件。

好了,我们来看代码(一分钟读完)

那么我们的洞察库是什么样的呢?它如何使实现变得更容易?

下面的标准代码片段说明了您需要的代码。它向 Algolia 的分析引擎发送以下信息:

  • 用户令牌
  • 查询 ID
  • 单击项目的对象 ID
  • 项目在结果中的位置
  • 事件类型(点击、转化、查看)

这是发送点击事件的代码:

insights_library('clickedObjectIDsAfterSearch', {
    userToken: 'user-123456',
    eventName: 'Product Clicked',
    index: 'products',
    queryID: 'cba8245617aeace44',
    objectIDs: ['9780545139700'],
    positions: [7],
}); 

就是这样。

如需完整代码,您可以将其复制到您的应用程序中,请查看我们的 发送点击事件文档

对于那些喜欢看现场编码的人,看看我们如何在 5 分钟内构建一个发送分析事件的应用

这段代码是做什么的?

代码背后的一般思想是发送特定类型的事件。这里,事件是用户在搜索结果上点击 的

还有其他种类的事件。例如,我们给上面的“点击”事件添加一个“转换”事件:

insights_library('convertedObjectIDsAfterSearch', {
    userToken: 'user-123456',
    index: 'products',
    eventName: 'Product Wishlisted',
    queryID: 'cba8245617aeace44',
    objectIDs: ['9780545139700', '9780439785969']
}); 

这个发送一个 wishlist 转换 事件。该函数的参数表明用户向他们的愿望列表添加了两个对象( 97805451397009780439785969 )。

要获得完整的代码,您可以将其复制到您的应用程序中,请查看我们的 发送转换事件文档

这些事件告诉我们用户的旅程和购买偏好是什么?

首先,用户搜索“哈利·波特”。然后做了如下操作:

  • 点击一个结果(假设“哈利波特,第一册”,用它的objectID表示)
  • 《哈利波特,第一部》加入他们的愿望清单
  • 改装另一本书(《哈利波特,第二部》)

你能从这次旅行中学到什么?

  • 该用户显示出对儿童物品以及冒险或奇幻书籍的喜爱。您可以使用这些信息来个性化他们的结果。
  • 如果许多用户做同样的事情,那么《哈利·波特》应该会出现在搜索结果中更靠前的位置。如果这是一种趋势,并且你已经启用了动态排名,那么搜索引擎会自动这样做。否则,您可以改进您让与您的点击事件一起发送的position值(该值保存在分析数据库中)。这个例子你发了positions: [7],可能太低了。您可以通过 提炼和重组您的数据 和/或 调整您的设置 来提高职位。

延伸阅读

我们的文档很好的解释了 发送事件 的各个参数。他们还展示了其他 11 种语言的代码片段( PHPJavaScript, RubyPythonC#/。NETJavaSwiftAndroidKotlinGolang

我们也有很多有用的教程;例如,查看我们的 点击分析解决方案

接下来是什么

现在你知道了实施点击分析的五个关键原因。概括地说,它让您:

  • 检测点击和转换行为的模式,然后您可以使用这些模式来配置您的设置和重新排序结果
  • 检测最近的购买趋势,搜索引擎可以利用这一趋势将表现最佳的商品推至搜索结果的顶部——动态且即时
  • 捕捉每个用户独特的搜索和点击活动,针对一组特定的方面或项目类别个性化他们的结果
  • 检测并帮助解决低效的搜索体验
  • 使用 A/B 测试测试搜索设置

搜索栏可以提供如此多的见解,这仍然有点新奇。或者是?Google Analytics 已经存在一段时间了,它帮助在线企业迭代他们成功的最佳公式…我们已经描述了如何使用点击分析来获得类似的洞察力,

我们的建议:让您的业务和开发团队一起实施Click Analytics Insights API。****

迁移到无头架构的 5 个理由

原文:https://www.algolia.com/blog/product/5-reasons-why-retailers-move-from-a-monolithic-to-headless-architecture/

近年来,电子商务行业经历了重大转变,带来了巨大的变化,需要面向未来的技术堆栈架构。许多传统零售商发现自己正与纯数字零售商激烈竞争,在一个不同于他们习惯的空间竞争。这种转变带来了一系列新的功能、行业标准和要求。

一家采用整体电子商务平台架构的零售商面临着功能和可扩展性方面的限制。此外,对于任何无法过渡到或可组合架构的公司来说,未来的增长机会都变得遥不可及。

单片架构

典型的 单片架构 本质上是非常限制性的。一方面,它给了用户“一切都在一个地方”;另一方面,它不能为现代电子商务平台提供最佳性能,以保持竞争力,并提供快节奏零售业所需的卓越数字体验。由于业务逻辑被困在一个整体框架中,每一个小的变化都需要广泛的跨团队协调,降低响应速度,并引入多个失败机会和不必要的复杂性。

无头建筑

无头架构 将前端与后端(电子商务解决方案提供的逻辑)分离,使公司能够专注于客户体验和交互,而不必担心每次迭代对关键后端系统的影响。无头架构意味着电子商务平台背后的商业逻辑充当“核心体”,通过 API 交付。这个主体然后被附加到许多“头”上,这些“头”代表内部系统面向客户的接触点(交易发生的地方)和面向员工的接口。

可组合架构

可组合架构 将 Headless 提供的灵活性向前推进了一步。如果当前使用的主要平台仍然是全栈,无头商务的业务逻辑有时仍然会被困在 monolith 中,这会限制平台的功能。可组合商务提供了一种架构,其中每个元素完全独立于彼此工作,并且可以被替换,而不会对系统的其余部分造成任何影响。每个元素被称为“打包业务能力(PBC)”。每个 PBC 的目标是解决一个非常具体的问题,易于实现,并通过 API 层连接到系统中的其他部分。这种设置允许电子商务公司在一个系统中结合最佳元素,并为其独特的使用案例和业务需求实现最佳架构。

为什么要移动到无头?

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

向无头架构的数字化转型的好处源于前端与后端的分离。解耦架构使公司能够挑选最佳的构建模块,并允许他们快速迭代和适应任何内部或外部变化。

由于采用了无头方法,零售商获益:

    • 灵活性–消除对功能有限的单一解决方案的依赖
    • 速度——快速轻松的部署、变更、迭代和策略修改
    • 定制–选择最佳构建模块来创建定制解决方案,以适应每种独特的使用情形
    • 全渠道能力–在任何平台或设备上提供最佳的最终用户体验
  • 未来的增长和机遇

    • 接触和顺应新趋势,如移动语音频道&社交商务或直播商务,这些都在迅速普及
    • 通过提供更好的用户体验增加您的预期收入
    • 随着消费者习惯的改变,通过在客户选择的平台上提供多渠道服务来提高用户参与度&忠诚度。

学习电子商务行业领导者的成功转型:

Gymshark 的马赫之旅:搜索与导航的实用案例

结论

电子商务公司从整体架构过渡到无头或可组合架构可以获得多种好处:构建最佳解决方案的灵活性,并针对特定的用例或需求进行定制,而不局限于单一工具;迭代和推出新产品和服务的速度:无论平台或设备如何,都能够为客户提供最佳体验。这一转变开启了未来的战略增长机遇。

如果您计划迁移到无头架构,但不确定从哪里开始或需要更多信息,请随时 联系我们的团队今天

如何扩大 SaaS 企业的规模:Jason Lemkin 的 5 个增长技巧

原文:https://www.algolia.com/blog/product/5-saas-scale-growth-tips/

大多数 SaaS 的创始人都是以同样的方式起步的——在产品的技术细节方面拥有丰富的专业知识,但在销售等其他方面的经验有限。

在我们的 SaaS 专家系列中,我们向 SaaStr 的创始人、一位成功的初创公司投资者杰森·莱姆金(Jason Lemkin)请教,如何创建一个强大的框架来扩大一家高绩效 SaaS 公司的规模。

1。在早期阶段寻找产品与市场的匹配

杰森将产品/市场契合度(PMF)定义为一个阶段,在这个阶段,一家努力争取客户的初创公司突然看到了增长,但他们不知道为什么。例如,可能是因为他们推出的某个功能远比他们想象的重要,等等。

杰森举了一个例子,当 PMF 开始时,阿尔戈利亚是如何找到它的。Algolia 打造的第一款产品从未达到产品市场契合度。当它开始时,Algolia 是一个轻量级的移动 SDK,预计在 2012 年移动电话上固有地工作,当时手机的功能远不如今天。虽然每个人都喜欢搜索功能可以如此简单地实现,但没有人付费购买该产品。在移动领域,这还不是一个大到你可以围绕它建立业务的问题。

“所以他们采用了同样的技术,并将其重新包装成 API。然后嘣!”基本上,这是一种不同的技术表达/用例,但却是适合市场的。

实现产品与市场匹配的下一步是与付费用户就功能差距展开对话。理解并专注于能让他们支付更多的功能。“你每月付给我 500 美元。我能为你建造什么给我每月 2000 美元?如果你的客户爱你,他们会想从你这里买更多,”杰森在与他们交谈(一遍又一遍)以开发 PMF 时说。

2。持续获取客户

你可能没有那个神奇的销售人员,但作为创始人,你就是要销售。创始人销售的诀窍是:客户和潜在客户喜欢和首席执行官交谈。如果你能解决潜在客户的问题,而你是首席执行官,那就利用这一点。作为创始人,你不需要成为世界上最好的销售人员,你只需要努力去销售。

然后,还有你的超能力。在早期,创始人擅长一两个方面——这些方面对你的公司很有帮助。这些就是杰森所说的你的超能力。

例如,当 Algolia 试图起步时,联合创始人 Nicolas Dessaigne 经常出现在活动的舞台上,这引起了很多关注和对产品的兴趣。

他还会参加开发者网络活动,并管理一个展位。当 Algolia 成为开发商中的知名品牌时,他的不懈努力得到了回报。

Algolia 的另一位联合创始人朱利安·莱莫因写了一篇数据丰富的博客文章,将 Algolia 与其当时的顶级竞争对手进行了比较。这是一篇认真的文章,讲述了竞争对手优于 Algolia 的例子,反之亦然。这篇经过充分研究并有数据支持的文章在很长一段时间内带来了一致的线索。这产生了大量的线索和可信度——甚至在内容营销成为考虑因素之前。

这个想法是确定你的超能力并加倍努力。大多数 SaaS 初创公司的创始人都有闪亮物品综合症——他们想同时尝试各种活动、博客文章、合作伙伴项目和对外宣传。这会分散你的注意力,让你无法完全专注于一个频道。在销售线索挖掘方面,跟踪和加大对有效渠道的投资也变得非常困难。

另一个要记住的技巧是:营销努力会随着时间的推移而复合。

Jason 说,“无论什么方法有效,都要多做,给自己 24 个月的时间,观察有什么化合物”。

3。雇佣你的第一个(第二个,第三个)销售人员

有一天,你会有一个很棒的销售副总裁,他会培训和雇佣不同的人。一开始,你必须换个角度思考。想想你是否会从这个人那里购买你的产品。请记住,虽然你可能希望有人在 Twilio 或 SendGrid 击败它,但这个人可能不是你创业的最佳人选。

对于你的第一个销售“魔术师”,你需要一个非常非常了解你的产品的人——远远超过 100 号销售人员。“我经常发现,可能在不同行业的古怪、创新、超级聪明的人在这些职位上表现出色,”杰森说。

有一天,你会有一个很棒的销售副总裁,他会培训和雇佣不同的人。一开始,你必须换个角度思考。

4。雇佣 CRO 或 CMO

为公司的正确阶段雇佣正确的人比为了某个头衔而大量雇佣更重要。此外,杰森建议初创公司的创始人要小心头衔膨胀,因为这会给公司和员工带来误导性的期望。

在大多数情况下,公司希望招聘一名销售副总裁,但却将其与 CRO 或 CMO 混为一谈。首席营销官(CMO)或首席收入官(CRO)不是营销或销售副总裁的扩展角色。当 CRO 或 CMO 不能真正拥有全部职能时,他们就在为自己的失败做准备,而他们本来可以作为副总裁成功地完成大部分相同的工作。

SaaS 的角色变得越来越跨职能,所涉及的团队必须保持一致,以实现持续增长。CRO 调整收入生成,以便营销、销售和客户成功副总裁一起工作,在不偏离核心目标的情况下实现收入最大化。

5。如何应对全球危机

自 3 月初以来,企业一直在应对新冠肺炎的影响。虽然其中一些公司,如 Zoom,是“COVID 的受益者”,但许多在旅游和酒店领域经营的公司却受到了冲击。

“我不是说你不会受伤。但是不要太关注不好的一面,要把所有的努力都投入到成功的领域中去。

旅行依然存在,已经从最低点反弹。你能做些什么来让旅行的人们过得更好?

他认为收入不会达到 2020 年初的预期,必须重新定义和确立第三季度的目标。他说:“了解它工作的地方,并在那里指导团队。”

他举了 SaaStr 的例子,这是他在每年第一季度举行的年度贸易会议。这项活动吸引了来自世界各地的 15,000 人。今年,由于 COVID 的限制,它不得不被取消。他们立即转向在线活动,自那以来已有 3 万人参与。

想了解更多创始人智慧、演讲录音、搜索和发现知识,请前往 Algolia 资源库

五大语音搜索趋势值得关注

原文:https://www.algolia.com/blog/product/5-voice-search-trends-to-look-out-for/

多年来,人们一直在预言语音搜索将很快超过所有其他搜索。但是,随着尘埃落定,我们看到的增长比预期的要温和得多。仍然有许多用户倾向于语音搜索,语音优先设备和虚拟助手如 Google Home、Alexa 和 Siri 成为许多家庭的必需品。很明显,语音搜索在搜索的发展中扮演着重要的角色,而且随着越来越多的消费者对语音搜索越来越熟悉,它将会继续发展。

但这种不断变化的格局让许多网站和企业想知道语音搜索会对他们产生怎样的影响。哪些语音搜索趋势会持续下去?如今语音搜索的现实是怎样的?语音搜索在未来会是什么样子?

语音搜索简史

今天的语音搜索可以追溯到一些早期的前辈。

语音识别

语音识别出现于 20 世纪 50 年代,贝尔实验室开发的软件可以识别基本的数字。从那时起,创新和改进出现了,包括 70 年代美国国防部的 DARPA SUR 项目,80 年代马尔可夫模型的开发,以及 90 年代更快的微处理器的出现。

在早期,谷歌创造了“ 谷歌语音搜索 ”一个利用云数据中心处理能力的 iPhones 应用程序。在接下来的几年里,谷歌继续创新,用大量人类语音和训练数据的例子来微调他们的软件。

互动语音应答

语音优先技术允许人类通过语音与计算机系统进行交互,但早期的交互式语音响应(IVR)设备首先做到了这一点。今天,大多数现代用户通过呼叫中心与 IVR 进行交互,呼叫中心的自动化系统允许用户通过语音或键盘进行选择。这项技术最早出现在 60 年代,当时人们试图通过改进合成语音来提高呼叫中心的效率。更先进的 IVR 尤其引人注目,因为它首次将语音和网络真正连接起来。

这些技术为我们今天看到的语音识别和语音搜索技术奠定了基础。

语音搜索现在在哪里?

在 2014 年的一次采访中,吴恩达 有一个著名的预测 ,“在五年时间里,至少 50%的搜索将通过图像或语音进行。”

嗯,我们刚过了 5 年。那么语音搜索和预测相比如何呢?

证据显示 语音和图像搜索尚未达到全部搜索的 50%。然而,有很多令人兴奋的研究表明,语音搜索是多么强大,以及用户如何将其融入他们的生活。

对于用户:

对于公司:

  • 91%的公司正在进行 重大投资 语音
  • 76%的受调查公司报告称从语音和聊天计划中获得了 可衡量的收益
  • 一些公司发现客户服务成本降低了 20%

5 语音搜索趋势

然而,所有这些最新的数据在实践中意味着什么呢?企业和用户应该注意哪些趋势?首先:

1。人们对语音搜索越来越适应了

尽管语音搜索的增长更加稳定、稳健和适度,但用户无疑正在将语音优先的设备和功能融入他们的生活。而且,语音搜索带来的舒适意味着搜索行为的改变。事实上, 71%的用户更愿意通过语音搜索,而不是使用键盘 。其他研究显示 40%的千禧一代在购买前通过语音 研究产品。这些统计数据讲述了一个引人注目的故事:人们已经准备好进行语音搜索了。

2。以关键词为中心的搜索变得不那么流行了

多年来,在谷歌等网站和搜索网站上搜索意味着在搜索栏中输入几个关键词。如今,现代互联网用户正在远离传统方法,转向更多的 对话式查询

当用户对着支持语音的设备和助手说话时,他们倾向于使用自然的说话模式,而不是生硬的关键词结构。事实上, 对谷歌助手 的 70%的查询都是用自然语言。这意味着查询包括更多的短语、完整的问题和自然语言的常见字符串。

3。用户有更高的期望

像谷歌、YouTube 和其他知名网站这样的主要参与者的速度和相关性已经提高了网站的赌注。用户现在希望每个查询都能得到快速、相关和个性化的结果。因此,当用户使用语音搜索时,他们希望得到完美的结果。

不幸的是,尽管用户期望很高,语音搜索的头号痛点是无法得到他们查询的正确答案。用户期望不会很快降低。因此,对于语音搜索来说,最重要的是快速达到与更传统的基于文本的搜索方法相同的相关性 的水平。

4。网站和网站内容正在针对语音搜索进行优化

许多公司已经在投资优化他们的语音搜索网站。不幸的是,有些人在其策略中过分强调了语音相关的 SEO 改进或特定语音搜索技能的编程。

实际上,为语音搜索做准备要多得多。它要求首先理解并优先考虑客户的需求,这样网站搜索和内容才能适应自然语言的需求。公司需要优先在自己的网站和应用上提供出色的搜索体验。

5。语音搜索正在向实体店蔓延

语音搜索不仅仅局限于个人设备;许多实体店也在利用这一优势。使用语音优先设备,如在实体位置的 语音信息亭 帮助客户定位物品,可以确保总有人在那里,以改善客户的实际体验。

未来使用语音搜索

随着语音搜索功能的不断扩展,客户表达需求的方式和公司满足这些需求的方式都将发生变化。语音搜索未来可能的发展方向包括:

  • 语音搜索会更加主动。

随着时间的推移,语音搜索设备将开始理解顾客可能在寻找什么,甚至在他们搜索之前。通过人工智能功能,搜索系统将能够学习客户偏好,并与相关背景(如位置、天气等)联系起来。向用户提出最有价值的产品和内容建议。

  • 语音搜索将取决于客户和公司对它的投资力度。

最终,语音搜索将继续受到用户选择如何将其融入生活的驱动。基于到目前为止的强劲采用,很明显用户看到了强大的自动语音识别(ASR)和自然语言处理(NLP)的价值。随着这种买入的继续,公司将被激励继续投资、改进和提供技术。

同样,语音搜索的未来取决于公司对它的接受程度。他们可以选择投入足够的资源,将虚拟助手的语音集成到他们的网站和应用程序中,确保助手生态系统可以互操作,并建立自己的助手。或者,他们可以采取简单的方法,只需在他们的移动应用程序上安装麦克风,或者只需插入现有的助手。

  • 语音搜索将有助于简化常见任务

随着人们越来越习惯于在公众面前与 Alexa、电视、我们的手机以及普通的计算机交谈,更平凡的“人类”或重复性任务将被交给计算机。这种情况将会发生,就像手机银行取代了去银行存款一样。家用设备已经可以执行诸如降低或提高温度或灯光以及打开厨房电器等任务。这项功能将继续扩展。

  • 语音搜索将会有无人探索的用途!

当然,语音搜索可能提供的功能还没有被想象出来。想象一下,去一家家装店,通过语音搜索获得产品推荐并找到这些产品。同样,在任何活动或景点购买门票也可以通过语音应用程序轻松完成。一旦技术赶上了用户的期望,语音搜索就前途无量。

语音搜索是你搜索策略的一部分吗?

语音搜索肯定会继续存在。确保 语音搜索 是你优化的、直观的网站搜索策略的一部分。

在我们的电子书 中阅读更多关于为语音搜索的未来做准备的信息 下一次技术革命即将到来

A/B 测试你的搜索相关性的 5 种方法

原文:https://www.algolia.com/blog/ux/5-ways-to-ab-test-your-search-for-relevance/

优秀的搜索应该尽可能快地引导用户找到他们的需求,但是为你的网站达到合适的相关性水平并不总是简单明了的,而且需要时间来做好。有了一个可靠的搜索即服务提供商,你的默认排名应该已经相当不错了。尽管如此,由于每个企业都是独特的,搜索变化会影响 KPI 和用户体验,您可能会想要衡量添加自定义排名因素、新属性等对您的整体搜索相关性的影响。

通过 A/B 测试,您可以利用数据实时验证您的决策,并满怀信心地对您的搜索进行更改。

什么是 A/B 测试?

A/B 测试是同时运行两个不同版本的用户界面组件,同时收集指标以确定对 KPI 的影响的过程。对于搜索工具来说,这在测试相关性算法和配置的变化时是有用的,因为有清晰的成功指标可以监控,例如点击率和转化率。

运行搜索相关性的 A/B 测试有几个步骤:

  1. 选择哪些指标和统计方法与测试及其结果相关
  2. 决定要回答的相关问题、要衡量的 KPI 和指标 以及它们与您提议的变革之间的关系。这可能包括你试图验证的假设。
  3. 同时运行两个版本的用户界面 来控制可变性。应该随机分配用户,以最小化任何统计噪声或偏差。确保您运行测试的时间足够长,以收集具有统计意义的数据。
  4. 分析测试结果这些指标是大幅增加了,还是下降了,还是保持相对稳定?这与历史数据相比如何?
  5. 行动起来! 如果测试结果表明 KPI 有所改进,那么就向所有用户推广这一变更。如果失败了,就放弃它,重新开始。

为什么要测试你的搜索?

搜索是在线体验的基础部分。事实上,Forrester research 发现,零售网站上的 43%的用户 会直接进入搜索栏。此外,由于谷歌和其他全球搜索引擎,用户期望在他们访问的每个网站上都有快速和高质量的结果页面。通过 A/B 测试优化的搜索体验通过帮助用户快速找到他们想要的东西并最终转化来促进用户参与。

A/B 测试是优化你的搜索框搜索体验的好方法:

  • 与用户输入 完美关联。优化搜索和调整相关性的目的是为用户提供更好的结果。通过 A/B 搜索测试,您的用户将直接参与到这个过程中。您可以跟踪用户如何与您的搜索互动,并根据真实的反馈而非猜测进行改进和更新。时尚平台 Videdressing 定期使用 A/B 测试 来验证从超过 100 万个产品目录中购物的顾客的产品变化。
  • 利用数据驱动的洞察力 。用户很难预测,A/B 测试结果有助于准确显示他们对变化的反应。当您针对一个可比较的控制组收集了足够的数据用于一个单独的变更时,您可以通过统计数据确信结果是有意义的,并从中做出可操作的决策。
  • 不冒风险获取知识。 A/B 搜索测试允许您对您的用户的代表性样本进行测试变更。由于您的大多数用户不会受到影响,因此您可以放心,收入和 KPI 也不会受到影响。

测试你搜索 A/B 的 5 种方法

鉴于搜索几乎适用于所有行业,有多种方法可以试验相关性规则和公式的变化,看看它们如何影响你的 KPI。这里有五个重要的测试类型的例子,你可以运行它们来改进这些指标:

1。查看社交证明数据如何影响您的搜索

在你的网站上利用 社交证明 对你的用户来说是非常有价值的,也是业务的重要数据点。在网站上展示喜欢、评论和意见可以提高访问者的兴趣、信心和参与度。它还可以向企业表明哪些产品或内容特别受欢迎、有用、有意义或受欢迎。因此,按照参与度对搜索结果页面进行排序通常是值得尝试的。

如果假设具有更多喜欢或分享的内容与用户更相关,那么您可以显示基于您现有排序行为的一个用户细分结果和根据参与度排序的另一个用户细分结果。跟踪这如何影响关键绩效指标,如点击率,以确定搜索结果实际上是否与用户更相关。

2。了解新的可搜索属性如何影响您的搜索相关性

当您修改文档结构时,索引内容通常会随着时间而变化。例如,如果您添加了一个额外的属性,比如“简短的产品描述”,那么这个内容可能会影响用户探索和使用它的方式。

因此,您可以尝试在搜索词和查询中包含这些内容,并改变该字段相对于其他字段的提升程度。如果提升新属性显示 KPI 相对于现有搜索算法的改进,那么它可能有助于搜索结果的更好相关性。

3。比较包含和不包含商品的查询如何执行

搜索营销 是一个强大的机制,用于推广对你的商业战略很重要的产品。然而,推广特定产品会影响搜索结果的相关性。

因此,在整个网站开展营销活动之前,A/B 对照控制测试变化,以首先了解它如何影响 KPI,这可能是有价值的。例如,您可以 A/B 测试一种销售技巧,如当用户键入类别名称时提升类别,以了解其表现如何。如果提升类别对点击率有负面影响,那么你可能会认为不值得向其他用户推广这一活动。

4。对比带有和不带有个性化的搜索

个性化 允许您根据用户的历史数据定制搜索结果。这可能包括过去的搜索、添加到购物车的产品、购买或其他相关指标。由于每个用户都有自己独特的需求和偏好,这对于让他们更快地找到相关内容是很有价值的。然而,有许多方法可以将个性化因素分层,因此 A/B 测试这些变化以了解它们如何影响 KPI 是很重要的。

例如,您可能假设向用户展示与过去购买相关类别的产品会增加他们的购买倾向。通过 A/B 测试这一理论,你可以相信,相对于你现有的算法,这种改进确实增加了转化率——或者你可以尝试不同的个性化方法。

迪卡侬新加坡公司使用 A/B 测试来衡量个性化对每个搜索词和查询的影响。他们的测试显示,个性化查询 的转化率提高了 50%,这使他们能够找到不同属性的个性化平衡。

5。从您的排名公式中添加和删除一些标准

搜索排名标准过多或过少之间有一个微妙的平衡。拥有大量参数似乎是一个好主意,因为您可以根据客户的需求高度调整结果,但这可能会导致范围过于狭窄,并降低您处理多样化客户群的灵活性。相反,一个宽泛而简单的排名公式可能在范围上是灵活的,但是它可能太笼统而不能给你的用户提供相关的结果。没有一个放之四海而皆准的方法来优化这种平衡,因此应该使用 A/B 测试来确定添加或删除这些标准会如何影响所有用户的相关性。

开始为您的搜索设置 A/B 测试

A/B 测试搜索对于所有拥有用户经常浏览和探索的内容目录的网站都很重要。你的用户看到的结果越相关,他们就越有可能保持参与并继续使用你的服务。要做到这一点,您需要一个搜索即服务提供商,它提供所有必要的工具来 运行有效的 A/B 测试

观看我们的大师课 ,了解 Algolia 如何帮助您为您的搜索进行稳健而成功的 A/B 测试。

选择网站搜索工具时需要考虑的 6 个特性

原文:https://www.algolia.com/blog/product/6-features-to-consider-when-selecting-a-site-search-tool/

Web 近年来,网站和应用内搜索功能变得更加强大。随着消费者开始在亚马逊(Amazon)等电子商务网站上享受更快、更高质量的搜索,他们也开始期望能够即时访问其他网站和平台的内容。他们不想等待,也不想玩侦探游戏来导航到他们需要的项目。

因此,网站和应用必须为用户提供无缝的搜索体验。购物者需要能够快速搜索、访问和接触他们想要的产品和内容。如果你的网站搜索很慢,提供了错误的内容,或者受到用户体验挑战的困扰,潜在客户会去看看你的竞争对手是否提供了一条更容易的路径。这一点之所以重要,背后的驱动力在于数字:使用现场搜索的购物者的转化率比不使用现场搜索的购物者高出近 2 倍。 没有创新的解决方案和战略,你将失去收入和客户群。

对于是应该在内部开发解决方案还是寻找供应商,公司经常会陷入“分析瘫痪”。每条道路都可以带来网站搜索的增长,但两者之间的财务差异是有形的。第三方工具通过开发五个功能将 搜索成功率提高了 7-8%。这是一个显而易见的差异,但在此之后,通过第三方工具取得高度成功的公司数量比使用内部开发工具的公司多 20 个百分点。

您利用的任何解决方案都必须能够快速轻松地部署。它还应该是可扩展的,带来底线增长,等等。

看看这些必备的搜索功能,可以帮你找到合适的平台:

1。提高了搜索结果和内容页面的加载速度

客户总是在不断变化,对于不与他们一起变化的公司来说,这可能是代价高昂的。近四分之三的美国消费者不会等待 5 秒钟来加载网页。 加剧这一挑战的是,页面加载速度每延迟 1 秒,公司每天就会损失约 250 万美元。

搜索结果页面加载速度与内容页面加载速度有什么关系?它们是网站性能和用户体验的两面。用户宁愿离开你的网站,也不愿等待一个缓慢的页面加载,不管这个页面是搜索结果页面还是内容页面。考虑到客户使用的各种设备,以及他们是通过语音还是通过查询进行搜索,确保最佳的网站性能成为一项挑战。

好的供应商不仅意识到这一点,他们还能为你提供策略和技术能力,确保你的搜索结果页面和内容页面的加载速度是完整的,并且紧密结合在一起。这些方面不应该被认为是用户体验的独立组成部分。客户可能会等待几秒钟来加载一个内部搜索引擎结果页面 ,但是一旦他们点击了一个内容页面,如果他们不得不再等待几秒钟来加载页面,他们很可能会放弃,而你的竞争对手将会收获他们的挫败感。

2。语音搜索

语音搜索已经成为网上购物客户体验中无处不在的一部分。目前,全球 27%的在线人口使用移动语音搜索。 这是全球超过四分之一的消费者,他们在任何时候都会拿起智能手机向消费者提问。

每个电子商务网站都需要一个内部搜索引擎,能够利用语音搜索将购物者的口头意图转化为推动销售的相关内容。想象一个场景,一个顾客正在使用你的网站的语音搜索功能寻找一件红色的衬衫。糟糕的语音搜索可能会让搜索引擎寻找“redd shirt”或“read shirt ”,这将不会提供任何结果,并产生一个沮丧的购物者。一个供应商必须能够在你的搜索 网站的整体功能中充分集成这项技术,为用户提供相关的、适用的结果。

根据 Review42 的一项研究,从 2016 年到 2018 年,语音搜索在千禧一代、x 世代和婴儿潮一代中的使用越来越多。 此外,研究显示,98%的 iPhone 用户和 96%的 Android 手机用户使用 Siri 和 OK Google 作为他们搜索体验的一部分。 越来越多的人使用语音搜索,这凸显了与能把它融入网站用户体验的供应商合作的重要性。

3。人工智能工具

48%的智能手机用户和 64%的平板电脑用户预计未来会更多地使用这些设备的语音搜索工具。⁷然而,70%的消费者抱怨说语音搜索并不总能提供他们想要的结果。t38】

决定客户语音搜索体验好坏的因素是什么?人工智能!人工智能是将用户的语音搜索查询转换成相关结果,并对附加内容提出建议。例如,在“红衬衫”的例子中,AI 可以有效地搜索并列出网站上所有的红衬衫,以及可能与它搭配的裤子和鞋子。它甚至可以根据顾客的搜索和购买历史来预测他们可能想要什么。

当你与供应商接洽时,寻找那些提供 人工智能网站搜索 的供应商,这些搜索足够先进,能够真正了解客户并理解他们在寻找什么。一个好的人工智能解决方案提供语义和自然语言理解(NLU)工具,以确定搜索背后的意图,并帮助用户更快地找到他们想要的东西。基于同义词的解决方案将用户搜索请求中的形容词与相似的术语进行匹配。“red shirt”查询不仅会提供红色衬衫,还会显示类似颜色的衬衫,如深红色和猩红色,即使描述中不包含单词“red”或其任何变体。卓越的人工智能解决方案可以更快地呈现相关内容,以推动销售。

4。个性化体验的交付

两项统计数据强调了人们对个性化体验的日益关注,这两项统计数据解释了它们对购物者的影响:

  • 80%的客户将网站的用户体验等同于公司的产品和服务
  • 当用户体验根据他们的购物偏好量身定制时,48%的用户会花更多的钱

那么,如果一个更加定制化的 UX 能带来近 50%的销售增长,再加上一个积极的品牌印象,那你怎么能做到呢?答案是 分析

分析可以通过查看客户的搜索历史(以及浏览和购买记录)来阐明他们想要什么,然后建议相关的个性化内容。现场搜索空间中的供应商应专注于帮助您的客户获得的卓越体验。这意味着在如此精细的水平上利用分析(人工智能的最终阶段),就好像根据内容、销售和其他因素,每个用户都真正获得了自己的个性化体验。将更受欢迎的内容直接呈现在消费者面前会带来更大的收入。

5。移动优化搜索

近一半的网络流量来自移动设备,在 2020 年第二季度,仅手机就占了该流量的 51%以上。 最近的一份 爱立信移动报告 预测到 2025 年移动流量将增长 25%。

越来越多的客户使用移动设备来寻找他们想要的内容,销售和营销团队不应该认为他们只通过谷歌搜索来寻找。品牌忠诚者,甚至那些把你的公司作为考虑因素的人,会直接去你的网站(或应用程序)搜索。移动友好还不够。您的内部搜索功能需要针对 移动 进行全面优化,以利用消费者日益增长的使用设备进行搜索的需求。

当你浏览市场时,寻找那些能让你超越标准的现成解决方案的搜索供应商。询问供应商,他们是否有能力针对客户使用的各种移动设备优化您的内部搜索功能。这包括拥有一个易于访问和使用的搜索栏,以及包含建议或相关结果的能力。

“错别字容忍度”是针对用户输入错误字母或数字的另一个关键要素。将移动搜索栏与用户体验结合起来的策略推动了手持设备的成功。搜索必须在 iPhones 和 Android 手机上,在应用程序中,以及在不同的网络浏览器中都能很好地运行,并且必须在必要时自动调整搜索结果。

6。基于用户分析的适应性搜索性能

分析在谷歌上使用的搜索词是数字营销的基石之一,也是了解客户的最有效策略之一。

那么,为什么只有 7%的公司通过查看 内部 搜索数据来了解他们的客户呢? 检查内部数据的基本好处是显而易见的:在一项研究中,只有 30%的网上购物者利用了公司的现场搜索工具,而这些购物者转化的频率是普通人的 6 倍。t24】

最好的网站搜索例子应该是多方面的。是的,他们应该将用户与被查询的内容联系起来。但现代供应商也应该提供使用人工智能和分析的搜索功能,以不断了解客户在寻找什么,重点是关键词和模式。

随着时间的推移,公司将能够根据用户先前的查询,在搜索结果中有策略地提供产品和服务。在某些情况下,他们甚至能够在客户开始输入搜索词之前,根据过去的搜索来推荐内容。分析甚至可以围绕用户参与度和销售额提出业务见解,以帮助公司重组其内容计划,从而更有效地实现其关键绩效指标。

关于阿哥利亚

Algolia 是搜索和发现领域的领导者,提供一套现场搜索解决方案,将您的内容和产品组合起来,提供更吸引人的用户体验。

Algolia AI 是一个用自学习 AI 搭建的搜索云平台。它分析数以万亿计的搜索结果,以更好地理解用户意图,分析参与度指标,并解释打字错误。它甚至利用自然语言处理(NLP)来支持多语言查询。语音搜索产品提供了更个性化、更精确的客户体验,可以在移动、网络和语音优先平台上快速实施。

知道向供应商询问什么是提升你的网站搜索功能的第一步。

今天就注册免费试用 Algolia 的,探索更好的搜索策略如何为更好的用户体验提供动力 驱动您的底线!

6 种利用电子商务推荐的方法,作为搜索的一部分

原文:https://www.algolia.com/blog/product/6-ways-to-leverage-recommendations-for-ecommerce-retailers/

在电子商务平台上设计一流的购物体验时,我们必须考虑每个接触点的用户体验。我们已经确定了用户在电子商务网站或应用程序上发现产品时的两种基本行为类型:

  1. 搜索:通过在页面的搜索栏中输入查询进行发现
  2. 浏览:发现模式,包括搜索之外的任何其他活动,例如导航到不同类别的页面,点击横幅,过滤和排序产品列表页面上的结果,等等

毫无疑问,搜索在电子商务网站的最终用户体验中扮演着核心角色。有效的搜索解决方案对关键销售业绩指标的影响不可低估。有多种方式可以增强和优化平台上的搜索和发现体验,以适应各种电子商务用户旅程场景:

  • 添加建议搜索,让用户从最流行的搜索查询中进行选择。
  • 应用个性化,以确保始终为用户呈现与其独特偏好最相关的结果。
  • 激活人工智能同义词建议,让您的用户使用不同的词来搜索相同的产品。
  • 在顾客旅程的每个接触点添加建议。搜索和推荐是互补的产品。当一起使用时,它们能够为电子商务平台用户提供一流的发现体验。

结合搜索和推荐的引擎功能

在下面的例子中,体育用品时装零售商 Gymshark 除了使用 Algolia 搜索来支持 Gymshark 的网站之外,还使用由机器学习支持的 Algolia 推荐 API 来增加收入:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Gymshark 的成功指标:

  • 在黑色星期五,新用户的订单率增加了 150%,而“加入购物车”率增加了 32%
  • 回头客的订单率和“加入购物车”率分别提高了 13%和 10%
  • 每用户 1.4 次点击,而之前的解决方案为 1.1 次

了解领先的电子商务零售商如何利用人工智能推荐引擎的能力来实现他们的数字销售目标: Gymshark 增加了 Algolia 推荐来处理关键的黑色星期五期间

利用不同接触点的建议

推荐是利用人工智能能力提高可发现性、追加销售相关或经常一起购买的产品、增加平均订单量和提高收入的明智方式。

有多种方法可以在类别页面及其他页面上使用推荐:

  • 首页。 当用户登陆主页时,他们会看到一个动态的产品转盘,上面有推荐的产品,它会根据用户的需求调整推荐。
  • 类别列表页面或产品列表页面。 可在类别页面上展示推荐,以增加平均订单价值和每个订单的商品数量。

例如,在一个以跑鞋为特色的分类页面上,用户可以看到经常与跑鞋一起购买的商品的推荐,比如袜子。

  • 产品描述页面。一旦用户登陆一个产品描述页面,他们可能会对提供相似的产品或经常一起购买的产品感兴趣。

例如,用户点击了一件浅蓝色的 t 恤。他们不确定这个产品是否完全符合他们的风格。他们注意到“相似产品”图库下有一件相似的模糊 t 恤,正是他们正在寻找的,于是将它添加到购物车中。此外,他们在“经常一起购买”图库下看到了一条短裤,这是与他们的 t 恤相匹配的套装的一部分,并决定将该产品添加到他们的购物车中。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • 添加到购物车页面。一旦用户将产品添加到购物车中,追加销售的机会就出现了。人工智能生成的推荐可以帮助你提供合适的产品,以匹配你的用户已经表现出购买意向的商品。
  • 结帐页面。 结账页面是使用人工智能推荐引擎追加销售类似或相关产品的额外机会

例如,一个用户在购物车中添加了一条牛仔裤和一件衬衫,现在准备结账。你的商店为超过 99 美元的订单提供免费送货,但这位顾客的订单低于免费送货的最低限额。这是一个推荐额外产品的机会,例如搭配腰带、袜子或帽子。这对公司来说是一个双赢的局面,获得更多的收入和订单量,对客户来说,以免费送货的形式获得折扣。

  • 邮件推荐。有时,用户会放弃虚拟购物车,对尚未上市或暂时缺货的产品表现出兴趣,或者只是点击商品而不进行购买。通过使用人工智能推荐引擎向他们发送相关产品的电子邮件推荐,您可以重新介绍或提醒他们引起他们注意的商品。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

结论

利用客户旅程中多个接触点的推荐功能,并将其与高级搜索功能相结合,使电子商务零售商能够在其平台上为用户提供卓越的用户体验。实施建议有助于提高订单率、“加入购物车”率、平均订单价值和每份订单的商品数量。

要了解如何以最小的努力在您的电子商务网站上实现产品推荐,请查看这个简短的 现场编码视频记录

要了解如何在高重要性销售活动中利用产品推荐,如黑色星期五,请参考: 可组合商务如何在黑色星期五和网络周 期间促进客户消费。

关于 B2B 零售推荐实施,请参考 B2B 商务数字化转型:营销和 AI 优化

7 个伟大的网站搜索用户界面的例子

原文:https://www.algolia.com/blog/ux/7-examples-of-great-site-search-ui/

伟大的搜索不仅仅是主页上的一个框,你的网站开发者一直坚持要把它包括在内。经过适当的设计和优化,用户界面可以成为一个强大的门户,将您的用户与他们的需求联系起来,甚至是他们尚未发现的需求。一个设计良好的搜索界面是帮助用户保持参与并轻松找到他们想要的东西的好方法。

为什么搜索 UI 设计要紧

虽然今天大多数网站都有搜索栏,但许多网站并没有提供全面的搜索体验。 伟大的搜索超越了搜索栏 包括了一系列的功能、结果的相关性和设计。那么,为什么仔细关注你的搜索用户界面很重要呢?

嗯,搜索界面可能是你的用户在你的网站上互动的第一件事。这可能会影响他们对你的产品的印象,他们对你的品牌的认知,以及他们对你的网站的整体体验。只看以下统计:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

另外,搜索的用户 转化 的可能性比浏览的用户高 200%。如果你的界面很难使用并且提供无用的结果,你的网站就不能从搜索中获益。优化网站搜索的功能和用户界面会让访问者更加满意,并提高转化率、参与度和粘性。

相关链接–

  1. 了解 Algolia 的所有预建 UI 组件
  2. 来自 Algolia Code-exchange 的 UI 启动模板
  3. 【react、angular、vue 和 mobile 的预建 UI 设计套件。

7 恒星搜索 ui 的例子

有许多搜索 UI 组件,您可以对其进行微调,以提供有益且吸引人的体验。搜索栏的设计和功能、搜索结果页面的布局和功能、搜索过滤器和方面等都可以针对您的特定用例进行优化。让我们来看看 8 个定制了搜索用户界面来为用户提供最佳服务的网站。

1。with microcopy 的有用提示和建议

Microcopy是网站上帮助用户导航和使用界面的简短而有用的文本的术语。通过确保用户理解不同搜索组件的意图,Microcopy 提高了网站的可用性。

birch box使用搜索栏中的 microcopy 向用户传达搜索品牌和产品都会得到结果。该网站还在搜索栏下方使用 microcopy 搜索建议。通过在顾客很难错过的地方突出目标品牌,这可能是公司推动业务目标的一种战略方式。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
注—创建动画占位符文本的开发人员指南

2。卡地亚—一致的搜索栏位置

对于某些网站,导航是突出产品的主要方式。即便如此,搜索也不应该被忽视。虽然搜索可能在位置和样式上不太受重视,就像在 卡地亚 的网站上一样,但将搜索栏放在用户习惯找到它的地方仍然很重要。卡地亚的搜索栏很小,对比度极低,但不管是哪一页,都可以在右上角找到,就在用户期望找到的地方:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

3。ManoMano —自动完成或查询建议

自动完成查询建议 ,也称为预测搜索或自动建议,是在用户键入时实时给出的搜索建议。这些建议与用户的查询和/或网站上的热门查询上下文相关,旨在通过加快搜索过程和增加点击率来满足用户的需求。当用户在 的搜索栏中键入 ManoMano 时,他们会得到具体的产品建议以及更广泛的类别建议。为了帮助用户快速选择最适合他们的选项,建议之间的差异以粗体显示。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
注—创建预测性搜索建议的开发者指南

4。JB Hi-Fi —从搜索栏进行即时过滤

搜索过滤器和方面 帮助用户在浏览你的网站时提炼他们的意图。方面过滤器,通常显示在搜索页面上, 帮助用户使用预定义的类别缩小搜索范围 。这对于大型目录或产品具有许多不同属性的目录非常有用。为了指导用户,JB Hi-Fi 利用搜索栏下拉菜单来利用 facets。当客户搜索大类别的商品(如电视)时,会出现过滤器类别,帮助用户从搜索体验的开始就指定他们的搜索。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
注—为电子商务商店创建自动选择方面的开发人员指南

5。Birchbox —联合搜索的综合结果

通过 联合搜索 ,您可以在一个易于使用的界面中为用户提供多样化的结果,如产品、文档、产品指南、文章等。这为公司带来了 诸多好处 ,包括更好的客户参与度和更高的转化率。

只需在birch box网站上敲几下键盘,顾客就能看到相关的产品、顶级品牌、有用的类别和相关的文章。这创造了更全面的搜索体验,可以大大减少搜索时间。联合搜索还可以加强客户对品牌的感知,因为策展背后的思想水平对用户来说是显而易见的。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
注—开发人员使用联邦搜索创建自动完成体验的指南

6。国家地理探险——动态浏览体验的方方面面

虽然 facets 可以很好地缩小搜索结果的范围,但它们也为探索性的导航体验提供了强大的基础。 【国家地理探险队】 利用 facets 提供独特的浏览体验,引导用户浏览内容,无需搜索栏。在 expeditions 主页上,用户可以根据目的地、旅行类型和出发月份来搜索旅行。

在结果页面上,他们可以根据价格、行程长度、兴趣等方面进一步细化搜索。这些方面很容易调整,不需要用户从头开始搜索。所有这些都可以在用户不需要在搜索栏中输入的情况下完成。最终,你的搜索用户界面应该以一种最符合你的用户需求和你想要为他们策划的体验的方式来设计。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

7。安德玛——有用的“没有结果”页面

一般来说,“没有结果”的页面都是 UX 死角,可以通过优化你的搜索来避免 。不过,有时用户会搜索与你的网站无关的产品或内容,或者他们会键入无法理解的搜索查询,而 系统无法恢复这些查询。当这种情况发生时,为用户提供一条快速返回到他们的搜索和发现过程的途径是很重要的。

安德玛 的网站上,如果出现这种情况,会向用户显示与其原始查询相关的搜索推荐以及具体的产品推荐。虽然他们最初的查询可能不成功,但搜索巧妙地引导他们发现他们可能感兴趣的新东西

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

设计一个搜索 UI,平稳地引导用户找到他们的需求

设计搜索 UI 时,必须考虑用户旅程和探索过程的每一步。为了提供您的用户期望的服务级别,您需要一个 搜索即服务 合作伙伴,帮助您以灵活和可定制的方式提供所有行业标准功能。阅读我们的电子书“ 超越框框的搜索 ”来学习如何开始为你的用户构建一个伟大的搜索设计。

相关链接–

  1. 了解来自 Algolia 的所有预建 UI 组件
  2. 来自 Algolia Code-exchange 的 UI 启动模板
  3. react、angular、vue 和 mobile 的预建 UI 设计套件

如何建立顶级媒体行业网站搜索体验

原文:https://www.algolia.com/blog/product/7-tips-building-exceptional-media-industry-site-search-and-discovery/

搜索是媒体公司经常忽视的一个话题。我们大多数人都会将搜索这个词与 Google/Bing/DuckDuckGo 等搜索引擎联系在一起。这些有机渠道通常是访问者(有时是内部团队成员)搜索内容目录的方式。但是现在是时候认真考虑一下你的内部网页搜索功能和体验了。

优化内部搜索体验有很多原因,比如:

  • 它揭示了清晰的投资回报,因为它补充了社交媒体和外部搜索。
  • 它有助于阐明用户意图,让你了解导航问题和内容需求。
  • 它如何通过向访客展示更多内容来展示你的产品目录的深度
  • 事实上,优化的搜索使访问者能够找到问题的解决方案,这意味着他们总体上更快乐。
  • 它让记者能够在自己的频道上发现内容,而不是外部频道。

好消息是为媒体网站或应用创造一个优化的网站搜索体验可能比你想象的要容易。

实现一流搜索和发现体验的 7 个技巧

提示 1:了解你的用户意图

你的目标可能是让用户消费内容。然而,在构建该内容的理想路径之前,您必须澄清用户意图:

  • 他们是否在寻找特定的内容,例如“昨天的英超比分”?
  • 他们是否在研究某个特定的话题或主题,例如“环保的生活方式”?
  • 或者他们在寻找灵感?了解新闻吗?

每个用户的意图通过不同的发现模式来解决:搜索、引导发现或推荐。确定所有用户搜索背后的特定意图和动机非常重要。请确保您花时间规划出这一点,然后单独为每个用户服务。

提示 2:审核你的内容目录

  • 与短期内容相比,您有多少长期内容?
  • 在您的实时内容中,今天实际使用的内容占多大比例?
  • 是否有机会向爬虫索引展示更多内容,也许是重新展示历史档案或添加新的合作伙伴内容?

这些类型的问题将帮助您确定发现策略的优先顺序。

最重要的是,你的元数据的质量(出版日期、主题、题目等)。)对于确保良好的用户体验至关重要。请明确哪些属性将决定您的内容在被查询时的排名。想一想你的内容目录的独特之处,比如新鲜度、特定的利基、短小精悍的内容、独特性等等。

提示 3:确定你的优先事项、KPI 和北极星指标

为了打造出色的搜索和发现体验,你需要清楚自己的优先事项和关键指标。也许这是为了增加花费的时间,增加参与度,以支持基于广告的模式。或者可能是增加高级订阅。

媒体公司经营几种商业模式并不罕见:基于广告的、基于订阅的、甚至是电子商务的。此外,优先级、目标和主要指标可能会随着时间的推移而改变。常见的视频行业点播模式包括 AVOD(基于广告的视频点播)、SVOD(订阅视频点播)和 TVOD(交易视频点播)。确定您的主要模型和目标对于构建出色的用户体验以实现这些目标至关重要。

为了实现你的目标,考虑:

  • 参与和发现模式,如相关内容推荐,或使用建议标签的主题提炼。
  • 构建内容发现小部件,让您能够从第三方和合作伙伴网站上浏览您的内容目录。
  • 个性化推荐和其他吸引忠实用户的方式。帮助他们发现新内容,并从您的平台中获得更多价值。

技巧四:构建你的发现地图

确定您的目标和核心指标后,您应该构建反映您的目标和具体需求的发现图。这里有一个模板和例子可以使用。

  • 在 X 轴上:描述你不同的内容类型:新鲜的新闻和简短的阅读,报道和长篇,档案,小众内容等。
  • Y 轴:你的各种用户或角色的意图
  • 在这个矩阵的每个内容类型框中,你描述一个“发现场景”。例如,什么是更好的接触点(如“搜索框”、“发现标签”或“主页”),或者什么是你的内容最重要的排名标准(如“出版日期”和“主题”),和/或什么是补充你的北极星指标的 CTA(如“阅读另一篇文章”或“登录”)

| | 内容类型 1 | 内容类型 2 | 内容类型 3 |
| 用户意图 A | 发现场景=

  • 首选接触点
  • 最重要的内容属性
  • CTA

| 发现场景=

  • 首选接触点
  • 最重要的内容属性
  • CTA

| 发现场景=

  • 首选接触点
  • 最重要的内容属性
  • CTA

|
| 用户意图 B | | | |
| 用户意图 C | | | |

提示 5:评估你现有的搜索和发现

接下来,审核您现有的设置。从评估您的各种发现场景开始,并注意它们的优缺点。

以下是在整个审计过程中需要评估的其他项目的示例。你是怎么管理的:

  • 错别字?例句:“我想看拉拉兰德”
  • 宽泛的查询?例句:“我想看浪漫喜剧”?
  • 自然语言查询?例句:“我想看电视连续剧”?

还有很多。记住:你对现有搜索的缺点和机会分析得越好,你就能越快地优化它们。

技巧六:在 AI 主导和人类主导的策展中找到合适的平衡点

整个媒体行业的监管策略千差万别。虽然出版商通常严重依赖编辑团队,但视频平台通常是由算法控制的。做这件事没有对错之分;找到平衡是关键。

例如,人工智能可以是一种展现你在内容发现地图中概述的内容的方式。在你已经考虑的发现场景中,思考人工智能如何帮助增强你的团队的工作。它可以弥补差距或节省编辑时间。找到这种平衡可以提高效率,关注质量。

有许多不同的方式来利用人工智能,这里有一些。可以:

  • 利用各种推荐模型完全驱动内容块或行
  • 用于手动管理的区块之上,根据其受欢迎程度对内容进行动态重新排序
  • 通过利用意图检测和显示内容或类别的个性化建议,缩短获取内容的路径

提示 7:选择适合你的解决方案

遵循本文概述的提示后,您将能够更好地为您的企业和团队选择合适的解决方案。您的实现是否包括构建自己的搜索和推荐引擎,或者是否包括从为开发人员设计的外部平台构建,或者您可能会购买现成的站点搜索解决方案。

在做出这些决定时,这里还有一些在该阶段很重要的考虑因素。

  • 从短期和长期可扩展性的角度考虑您的独特需求。例如,在地理足迹、扩张和管理观众高峰的能力方面,并非所有的解决方案都是相同的。
  • 同样,在考虑如何构建和维护所选择的架构和服务时,要理解您团队的独特情况。如果在内部构建东西看起来是你最好的决定,考虑维护、扩展和处理常规的变更请求以及开发特性和迭代需要什么。
  • 思考发现的未来:你今天对发现地图的定义可能会像消费者的行为一样迅速发展和变化。考虑一个经得起未来考验的解决方案,使您能够始终如一地为客户(和团队)提供最愉快、最有价值的体验。

我们希望这些技巧能帮助你为你的客户和团队创造最佳体验。祝您在规划、审核和创造独特的搜索和发现体验方面好运。这是值得的,因为有效的搜索和发现将有助于吸引你的网站访问者,并将他们转化为长期粉丝。

如果您想了解更多关于如何根据您独特的受众和情况打造最佳搜索、发现和推荐体验的信息,您可以联系我们的专家团队。我们非常乐意和你聊聊。

Kubernetes 最佳实践-来自过去的爆炸(radius )

原文:https://www.algolia.com/blog/engineering/8-algolia-tested-best-practices-kubernetes/

我们大约在四年前开始使用 Kubernetes。我们有新的服务要部署,即使我们是裸机的大用户,我们也需要更多的灵活性。因此,我们决定在新系统上测试和使用 Kubernetes。两年后,我们的大多数产品都部署在 Kubernetes 上,遵循 Kubernetes 的最佳实践。随着越来越多的团队开始在内部使用它,我们创建了一个内部培训。今天,我们很自豪地将这个培训开源,这样任何人都可以从中学习并做出贡献。

实施两年后,我们从培训中提取了八个实践,我们认为这八个实践是正确使用 Kubernetes 的关键。我们重新发布这些 Kubernetes 最佳实践,作为过去的一个亮点,并为未来关于我们和 Kubernetes 在过去两年中如何发展的文章奠定基础。

1。不要在容器中使用 root 用户

容器范式,以及它在 Linux 上的实现方式,并没有考虑到安全性。它的存在只是为了限制资源,比如 CPU 和 RAM,就像 Docker 的文档解释一样。这意味着你的容器不应该使用“根”用户来运行命令。在容器中运行程序与在主机上运行程序几乎是一样的。如果你有兴趣了解更多,查看这篇文章了解原因。

因此,在所有图像上添加这些行,使您的应用程序由专门的用户运行。将“appuser”替换为与您更相关的名称。

ARG USER=appuser # set ${USER} to be appuser
addgroup -S ${USER} && adduser -S ${USER} -G ${USER} # adds a group and a user of it
USER ${USER} # set the user of the container
WORKDIR /home/${USER} # set the workdir to be the home directory of the user

这也可以通过 pod 安全策略在集群级别得到保证。

2。处理“SIGTERM”信号

每当 Kubernetes 想要优雅地停止一个容器时,它就发送“SIGTERM”信号。您应该监听它,并在应用程序中做出相应的反应(通过关闭连接、保存状态等)。)一般来说,遵循十二因素应用建议被认为是良好的实践。另外,不要忘记在您的 pod 上配置 terminationGracePeriodSeconds 。默认值是 30 秒,但是您的应用程序可能需要更多(或更少)的时间来正确终止。

3。对您的清单使用声明式管理

使用声明性清单,这样可以有效地回滚代码和基础结构。这意味着您的源代码版本应该是您的清单的真实来源。

这意味着您只使用kubectl apply来更新或创建您的 Kubernetes 资源,但也意味着您不使用latest标签作为您的图像容器。容器的每个版本都应该是独一无二的,使用 Git 散列是一个很好的实践。当部署应用程序的新版本时,应该通过为容器指定新版本来更新清单,然后在源代码控制中提交清单,最后运行kubectl apply

4。Lint 你的清单

YAML 是一个棘手的格式。我们使用 yamllint ,因为它支持单个文件中的多文档。

你也可以使用 Kubernetes-specifics 棉绒:

  • kube-score 检查您的货物清单,并强制执行良好做法。
  • kubeval 也检查清单,但是只检查有效性。

在 Kubernetes 1.13 中, --dry-run选项出现在kubectl 上,它让 Kubernetes 检查您的清单而不应用它们。您可以使用此功能来检查您的 YAML 文件对于 Kubernetes 是否有效。

5。配置活动和就绪探测器

活性和就绪性是应用程序向 Kubernetes 传达其健康状况的方式。配置这两者有助于 Kubernetes 正确处理您的 pod,并对状态变化做出相应的反应。

活性探测器在这里评估容器是否仍然是活性的;也就是说,如果容器没有处于中断状态、死锁或任何类似的状态。从那里,它可以作出决定,如重新启动它。

准备就绪探测器在这里检测容器是否准备好接受流量、阻止首次展示、影响 Pod 中断预算(PDB)等。当您的容器被 Kubernetes 设置为接收外部流量时(大多数情况下,当它是一个 API 时),它特别有用。

通常,具有相同的就绪性和活性探针是可以接受的。但是在某些情况下,您可能希望它们有所不同。一个很好的例子是运行接受 HTTP 调用的单线程应用程序(如 PHP)的容器。假设您有一个需要很长时间处理的请求。您的应用程序不能接收任何其他请求,因为它被传入的请求阻塞了;因此它还没有“准备好”。另一方面,它正在处理一个请求,因此它是“活动的”。

另一件要记住的事情是,您的探测器不应该调用您的应用程序的依赖服务。这可以防止级联故障。

6。配置资源请求和限制

Kubernetes 允许您配置 pods 资源的“请求”和“限制”(CPU、RAM 和磁盘)。配置“请求”有助于 Kubernetes 更容易地调度您的 pod,并更好地在您的节点上打包工作负载。

大多数时候你可以定义"request" = "limit"。但是要小心,因为你的吊舱将被终止,如果它超过了limit

除非您的应用程序被设计为使用多个内核,否则最佳实践通常是将 CPU 请求保持在"1"或更低。

7。指定 pod 反关联性

当您部署一个具有大量副本的应用程序时,您很可能希望它们均匀地分布在 Kubernetes 集群的所有节点上。如果你所有的豆荚都在同一个节点上运行,而这个节点死了,这将杀死你所有的豆荚。为您的部署指定一个 pod 反关联性可以确保 Kubernetes 跨所有节点调度您的 pod。

一个好的做法是在节点的主机名上指定一个podAntiAffinity:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: my-application
spec:
 replicas: 2
 selector:
   matchLabels:
     app: my-application
 template:
   metadata:
     labels:
       app: my-application
   spec:
     containers:
     - name: my-pod
       image: my-image:my-version
     affinity:
       podAntiAffinity:
         preferredDuringSchedulingIgnoredDuringExecution:
           - labelSelector:
               matchExpressions:
                 - key: app
                   operator: In
                   values:
                     - app: my-deployment
             topologyKey: kubernetes.io/hostname

这里我们有一个带有两个副本的部署“我的应用程序”,我们指定了一个带有软需求的podAntiAffinity规范(preferredDuringSchedulingIgnoredDuringExecution,更多细节请参见这里的),所以我们没有在相同的主机名(topologyKey: kubernetes.io/hostname)上调度 pod。

8。指定 Pod 中断预算(PDB)

在 Kubernetes,豆荚有一个有限的寿命,可以随时终止。这种现象被称为【颠覆】

中断可能是自愿的,也可能是非自愿的。顾名思义,非自愿中断是指任何人都无法预料到的事情(例如硬件故障)。主动中断是由某人或某事发起的,如节点升级、新部署等。

定义“Pod 中断预算”有助于 Kubernetes 在发生自愿中断时管理您的 Pod。Kubernetes 将努力确保与给定选择器匹配的足够多的资源同时保持可用。指定一个 PDB 可以提高服务的可用性。

结论

四年前,我们使用这些优秀的默认设置,并将它们应用到我们在 Kubernetes 的所有应用程序中。我们建议您根据应用程序和工作负载的具体情况调整实践。

您可以在培训的专门部分找到关于这些良好实践的更多详细信息。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值