P15:15.Week 8 – Practicum_ Variational autoencoders - 大佬的迷弟的粉丝 - BV1o5411p7AB
好吧,哦97是的,差不多还有100个,再来三个,我应该邀请我妈妈,好吧,哦97是的,差不多还有100个,再来三个,我应该邀请我妈妈,她在今天上午的谈话中砍死了,这很有趣,她设法做到了。
她在今天上午的谈话中砍死了,这很有趣,她设法做到了,hack假设只有上帝知道是的,不要将这两种设备结合在一起,hack假设只有上帝知道是的,不要将这两种设备结合在一起。
只是增加数量是100 100 100 k这就像狗还好,所以。
只是增加数量是100 100 100 k这就像狗还好,所以,让我们回到编码器入门指南,让我们回到编码器入门指南,生成模型正确,因此让我们快速回顾一下有关,生成模型正确,因此让我们快速回顾一下有关。
输出编码器,所以我们再次在底部有一个粉红色的输入,输出编码器,所以我们再次在底部有一个粉红色的输入,可以看到颜色,然后进行仿射变换和,可以看到颜色,然后进行仿射变换和,然后您再次获得隐藏层的另一个旋转。
然后获得,然后您再次获得隐藏层的另一个旋转,然后获得,我们将要强制执行的最终输出接近于,我们将要强制执行的最终输出接近于,再次类似于输入,您有一个平行的图,其中每个,再次类似于输入,您有一个平行的图。
其中每个,转换用一个右框表示,因此在这种情况下,人们称之为,转换用一个右框表示,因此在这种情况下,人们称之为,该网络扩展为神经网络,因为有两种转换,该网络扩展为神经网络,因为有两种转换。
但是我实际上你知道主张的是,这是一个三层神经网络,但是我实际上你知道主张的是,这是一个三层神经网络,因为对我来说,层是那种激活,因为对我来说,层是那种激活,通常是定义,然后是的。
现在使用那种看起来像新的符号,通常是定义,然后是的,现在使用那种看起来像新的符号,像一个带有圆形顶部的盒子,好吧,所以我们有两个不同的图,像一个带有圆形顶部的盒子,好吧,所以我们有两个不同的图,在这里。
因为我们可以在表示之间来回切换,在这里,因为我们可以在表示之间来回切换,当我们想谈论单身时,有时使用左身更容易,当我们想谈论单身时,有时使用左身更容易,神经元,但有时我们更喜欢使用另一个,神经元。
但有时我们更喜欢使用另一个,就像您知道的那样,它占了多个层次,所以每个类似块都在这里或,就像您知道的那样,它占了多个层次,所以每个类似块都在这里或,编码器和解码器也可以是多层。
编码器和解码器也可以是多层,我猜有两个宏模块,所以输入信号进入编码器内部,我猜有两个宏模块,所以输入信号进入编码器内部,这给了我们一个代码,所以H之前,这给了我们一个代码,所以H之前,当我们谈论您时。
神经网络的隐藏表示形式会知道编码器,当我们谈论您时,神经网络的隐藏表示形式会知道编码器,H被称为代码,因此我们有一个编码器对输入进行编码,H被称为代码,因此我们有一个编码器对输入进行编码,到此代码中。
然后我们有一个解码器,它将代码解码为,到此代码中,然后我们有一个解码器,它将代码解码为,这种情况下的任何表示都与相同表示类似,这种情况下的任何表示都与相同表示类似,作为输入。
好吧,所以在右侧您已经离开了左侧的编码器,好吧,所以在右侧您已经离开了左侧的编码器,您将看到什么是变化值如何正确编码,您将看到什么是变化值如何正确编码,你去一个变化的alt编码器好吧,它看起来。
你去一个变化的alt编码器好吧,它看起来,一样,所以有什么区别,什么都没有丢失,所以,一样,所以有什么区别,什么都没有丢失,所以,第一个区别是,我们现在不再具有隐藏层的年龄,第一个区别是。
我们现在不再具有隐藏层的年龄,代码实际上是由两件事组成的,它是由一件事组成的。代码实际上是由两件事组成的,它是由一件事组成的。Z的资本e和Z的V的资本,它们将很快代表均值和,Z的资本e和Z的V的资本。
它们将很快代表均值和,这个潜在变量的方差表示然后我们将进行采样,这个潜在变量的方差表示然后我们将进行采样,从已经由编码器参数化的分布中,我们得到,从已经由编码器参数化的分布中,我们得到,改为Zedd。
这是我的潜在变量我的潜在表示形式,然后这,改为Zedd,这是我的潜在变量我的潜在表示形式,然后这,潜在表示在解码器内部,因此我采样的参数,潜在表示在解码器内部,因此我采样的参数,从像我有一个正态分布。
其中有一些参数E和VE和,从像我有一个正态分布,其中有一些参数E和VE和,V由输入X确定性地确定,但Z不是,V由输入X确定性地确定,但Z不是,确定性Zed是随机变量,可从,确定性Zed是随机变量,可从。
分布是由编码器参数化的,所以假设H是,分布是由编码器参数化的,所以假设H是,尺寸T现在,编码器按此处左侧的解码将是,尺寸T现在,编码器按此处左侧的解码将是,大小是D的两倍,因为我们必须代表所有的均值。
然后再代表所有,大小是D的两倍,因为我们必须代表所有的均值,然后再代表所有,在这种情况下,我们假设您知道D均值和D,在这种情况下,我们假设您知道D均值和D,方差,所以每个这些分量都是独立的好吧。
所以我们可以,方差,所以每个这些分量都是独立的好吧,所以我们可以,还可以将经典的out编码器视为仅对均值进行编码,因此,如果您,还可以将经典的out编码器视为仅对均值进行编码,因此,如果您。
对均值进行编码,您基本上将零方差设为,对均值进行编码,您基本上将零方差设为,还是确定性输出编码器,因此在这种情况下H可能是D,因此在,还是确定性输出编码器,因此在这种情况下H可能是D,因此在。
左侧的e和V将总计为D,左侧的e和V将总计为D,因为我们有D表示,这也意味着我们要对分布进行采样,因为我们有D表示,这也意味着我们要对分布进行采样,这将是一个正交的多元高斯,所以如果你有。
这将是一个正交的多元高斯,所以如果你有,所有彼此独立的组件,以及,所有彼此独立的组件,以及,因此Z将成为D维向量,但随后将采样,因此Z将成为D维向量,但随后将采样,来自高斯的D维矢量,您将需要D均值。
然后在这种情况下,来自高斯的D维矢量,您将需要D均值,然后在这种情况下,方差,因为我们假设,方差,因为我们假设,协方差矩阵都是零,只有对角线,协方差矩阵都是零,只有对角线,你有所有的变化都可以。
所以这里只是回顾一下,你有所有的变化都可以,所以这里只是回顾一下,将这种输入分布映射成类似输入的编码器,将这种输入分布映射成类似输入的编码器,R 2 D中的一组样本,因此在这种情况下,我们可以认为。
R 2 D中的一组样本,因此在这种情况下,我们可以认为,X到隐藏的表示形式,然后解码器改为映射z空间,X到隐藏的表示形式,然后解码器改为映射z空间,进入RN,该RN返回到DX的原始空间,因此我们从。
进入RN,该RN返回到DX的原始空间,因此我们从,小写到X帽子的人问EFC和VFC是,小写到X帽子的人问EFC和VFC是,Z的编码器ye和e的编码器只是震耳欲聋的参数。
Z的编码器ye和e的编码器只是震耳欲聋的参数,编码器确定性地输出,因此编码器是确定性的,编码器确定性地输出,因此编码器是确定性的,知道这只是经典的旋转和挤压,然后再好,知道这只是经典的旋转和挤压。
然后再好,转换,所以它只是神经网络的一部分,正在输出一些,转换,所以它只是神经网络的一部分,正在输出一些,参数确定,所以这是给我这些参数E的编码器,参数确定,所以这是给我这些参数E的编码器。
和V给定我的输入X正确,所以这是确定性部分,然后给定我们,和V给定我的输入X正确,所以这是确定性部分,然后给定我们,有这些参数这些参数是您知道的给我一个高斯,有这些参数这些参数是您知道的给我一个高斯。
具有特定方法和特定差异的分布,具有特定方法和特定差异的分布,高斯分布的方差,我们可以简单地建立一个样本集,高斯分布的方差,我们可以简单地建立一个样本集,然后我们解码。
这意味着我们将在一秒钟内看到什么意思,但是,然后我们解码,这意味着我们将在一秒钟内看到什么意思,但是,基本上,您将要编码,基本上,您将要编码,他们的意思是,然后您将要添加一些其他的声音,好吗。
他们的意思是,然后您将要添加一些其他的声音,好吗,到去噪自动编码器中的编码,我们得到了输入,到去噪自动编码器中的编码,我们得到了输入,您将噪声添加到输入中,然后尝试重建,您将噪声添加到输入中。
然后尝试重建,在这里输入没有噪音的唯一变化是,在这里输入没有噪音的唯一变化是,噪声被添加到内部表示而不是添加到,噪声被添加到内部表示而不是添加到,输入有意义吗,是的,这更有意义,谢谢,所以我注意到了。
输入有意义吗,是的,这更有意义,谢谢,所以我注意到了,该符号本身看起来像是期望值,该符号本身看起来像是期望值,只是Z的正常平均值,或者我们实际上是在计算我的加权平均值,只是Z的正常平均值。
或者我们实际上是在计算我的加权平均值,不,不,没有,所以我的X而不是输出,而是输出,不,不,没有,所以我的X而不是输出,而是输出,说D将是10,现在是隐藏的表示,而不是10,说D将是10。
现在是隐藏的表示,而不是10,代表平均值的值我们将有20个值10个值是,代表平均值的值我们将有20个值10个值是,代表平均值,10个值代表方差,所以我们,代表平均值,10个值代表方差,所以我们。
只是输出一个向量H在这里给定我的X向量的前半部分代表,只是输出一个向量H在这里给定我的X向量的前半部分代表,高斯分布和另一半的标准偏差的均值,高斯分布和另一半的标准偏差的均值。
向量的代表相同高斯分布的方差,向量的代表相同高斯分布的方差,因此第一个成分h1的成分年龄将是,因此第一个成分h1的成分年龄将是,首先是高斯,然后是成分年龄,好吧,我们称其为h 2 in,首先是高斯。
然后是成分年龄,好吧,我们称其为h 2 in,这种情况将是方差,那么你有h 3这将是另一个意思,这种情况将是方差,那么你有h 3这将是另一个意思,H 4它的力可能是另一个变化,所以好吧,这与。
H 4它的力可能是另一个变化,所以好吧,这与,使得Z像是从yeah yeah yeah采样的10维向量,使得Z像是从yeah yeah yeah采样的10维向量,是这里将是这些网站的一半。
所以编码器给了我,是这里将是这些网站的一半,所以编码器给了我,Z尺寸的两倍,然后因为您获得一半的尺寸,Z尺寸的两倍,然后因为您获得一半的尺寸,像其中一组是模因,一组是方差,像其中一组是模因,一组是方差。
然后我们从具有这些值的高斯样本中进行采样,因此网络可以简单地给出,然后我们从具有这些值的高斯样本中进行采样,因此网络可以简单地给出,我不仅是古典奥尔顿冷却器的装置,而且,我不仅是古典奥尔顿冷却器的装置。
而且,给我一些范围,我可以在什么时候选择合适的东西,给我一些范围,我可以在什么时候选择合适的东西,我们在这里使用经典的输出编码器,我们只有手段,然后您,我们在这里使用经典的输出编码器,我们只有手段。
然后您,在这种情况下,只需解码均值,您不仅拥有均值,而且还可以,在这种情况下,只需解码均值,您不仅拥有均值,而且还可以,有一些变体,这些变体意味着可以,所以编码器,有一些变体,这些变体意味着可以。
所以编码器,普通编码器确定性输出确定性输入功能,普通编码器确定性输出确定性输入功能,输入的变化停止编码器的输出不再是确定性的,输入的变化停止编码器的输出不再是确定性的,它不再是输入的确定性功能,而是。
它不再是输入的确定性功能,而是,给定输入权,则条件分配就是,给定输入权,则条件分配就是,输入,因此在这种情况下,我们确实看到我们上次看到类似的图表,输入,因此在这种情况下。
我们确实看到我们上次看到类似的图表,我们从左侧的特定点到右侧的位置,我们从左侧的特定点到右侧的位置,在这种情况下,我们从一个点开始,然后通过,在这种情况下,我们从一个点开始,然后通过,编码器。
您将在这里找到一些位置,但是还有,编码器,您将在这里找到一些位置,但是还有,噪音对,如果您只希望得到一个Zed,那么,噪音对,如果您只希望得到一个Zed,那么,鉴于还有一些额外的噪音是由于我们。
鉴于还有一些额外的噪音是由于我们,没有零方差,最终Zed不会是,没有零方差,最终Zed不会是,只是一点,就好像是模糊点,所以与其,只是一点,就好像是模糊点,所以与其。
现在一个点一个一个X将被映射到点的一个区域中,所以,现在一个点一个一个X将被映射到点的一个区域中,所以,实际上会占用一些空间,然后我们如何训练,实际上会占用一些空间,然后我们如何训练。
当我们通过将潜变量Z发送回去训练系统时,当我们通过将潜变量Z发送回去训练系统时,解码器,以便使这些X变得很热,当然不会,解码器,以便使这些X变得很热,当然不会,将其精确地还原到原始点。
因为也许我们尚未训练,将其精确地还原到原始点,因为也许我们尚未训练,所以我们必须重构原始输入并做到这一点,所以我们必须重构原始输入并做到这一点,试图最小化重建与,试图最小化重建与,原始输入。
然后我们遇到了问题,原始输入,然后我们遇到了问题,在喜欢去潜伏之前,先从潜伏到输入空间,在喜欢去潜伏之前,先从潜伏到输入空间,需要知道或延迟这种潜在的分布或强制执行一些。
需要知道或延迟这种潜在的分布或强制执行一些,上次发布时,我们看到我们在做类似的事情时,上次发布时,我们看到我们在做类似的事情时,我们正在使用经典的标准输出编码器,但我们要。
我们正在使用经典的标准输出编码器,但我们要,从一个点X到一个点Z,然后回到现在的X,相反,我们是,从一个点X到一个点Z,然后回到现在的X,相反,我们是,将要在潜在空间中的这些点上进行分布。
将要在潜在空间中的这些点上进行分布,在我们经历一个点一个点然后一个点之前,然后,在我们经历一个点一个点然后一个点之前,然后,不知道如果您在潜伏空间四处走动,请记住,不知道如果您在潜伏空间四处走动。
请记住,如果您左侧有任何样品,您将自动获得,如果您左侧有任何样品,您将自动获得,另一方面,十个潜在变量,但是你不知道怎么去,另一方面,十个潜在变量,但是你不知道怎么去,在这些输入之间。
您不知道该如何潜伏,在这些输入之间,您不知道该如何潜伏,空间,因为我们不知道该空间的行为还可以吗?空间,因为我们不知道该空间的行为还可以吗?颜色增强了某些结构,它们通过添加被惩罚来实现。
颜色增强了某些结构,它们通过添加被惩罚来实现,与正态分布不同或相距甚远,因此如果您有潜伏,与正态分布不同或相距甚远,因此如果您有潜伏,分布实际上不是高斯分布,分布实际上不是高斯分布,这将非常高非常高。
并且当我们训练一个传统编码器时,这将非常高非常高,并且当我们训练一个传统编码器时,我们将通过最小化这两个术语来培训NIT,我们将通过最小化这两个术语来培训NIT,这个术语在这里。
所以左侧的术语可以确保我们,这个术语在这里,所以左侧的术语可以确保我们,可以回到原来的位置,右侧的术语可以强制执行,可以回到原来的位置,右侧的术语可以强制执行,潜在空间中的结构,因为否则我们将无法为您。
潜在空间中的结构,因为否则我们将无法为您,当我们想使用此解码器作为生成模型时,从那里知道样本,当我们想使用此解码器作为生成模型时,从那里知道样本,好吧,这也许不太清楚,但是让我给您更多一点,好吧。
这也许不太清楚,但是让我给您更多一点,考虑一下,我们如何实际创建此潜在变量Z,所以我的Z就是,考虑一下,我们如何实际创建此潜在变量Z,所以我的Z就是,将会是我z的平均值y加上一些你知道的。
将会是我z的平均值y加上一些你知道的,一些噪声epsilon是来自正态分布的样本,例如,一些噪声epsilon是来自正态分布的样本,例如,零的正态多元高斯分布意味着一个恒等式。
零的正态多元高斯分布意味着一个恒等式,矩阵作为协方差矩阵,每个分量乘以,矩阵作为协方差矩阵,每个分量乘以,标准偏差射线,因此您应该在此处熟悉此方程式,标准偏差射线,因此您应该在此处熟悉此方程式。
右上方是重新缩放随机变量epsilon的方式,右上方是重新缩放随机变量epsilon的方式,正常情况下,您必须使用这种修复金属化工艺才能获得,正常情况下,您必须使用这种修复金属化工艺才能获得,高斯。
您知道特定变体中的特定均值,所以再次,高斯,您知道特定变体中的特定均值,所以再次,潜变量Z中的噪声只是在,潜变量Z中的噪声只是在,输入,因此输入中没有噪音,您可以将输入放置在,输入,因此输入中没有噪音。
您可以将输入放置在,编码器,然后当您,编码器,然后当您,从这个分布的样本中,您基本上得到Z以及得到的结果,从这个分布的样本中,您基本上得到Z以及得到的结果,只是您可以将采样部分写成这一部分。
所以问题出在,只是您可以将采样部分写成这一部分,所以问题出在,采样是我们不知道如何通过,采样是我们不知道如何通过,采样模块实际上没有办法通过同一个模块执行反向传播。
采样模块实际上没有办法通过同一个模块执行反向传播,事情,因为这只是生成一个新的集合,所以我们如何获得,事情,因为这只是生成一个新的集合,所以我们如何获得,通过该模块进行渐变以训练编码器,因此可以。
通过该模块进行渐变以训练编码器,因此可以,如果您使用此技巧,即修复金属化技巧,则完成,如果您使用此技巧,即修复金属化技巧,则完成,维修问题是亚洲的把戏,使您可以根据,维修问题是亚洲的把戏,使您可以根据。
你知道加法和乘法,我们可以区分右掷,你知道加法和乘法,我们可以区分右掷,epsilon仅仅是一个附加输入,您知道它来自任何东西,epsilon仅仅是一个附加输入,您知道它来自任何东西,只要没有问题。
我们就不需要通过此输入发送梯度,只要没有问题,我们就不需要通过此输入发送梯度,梯度将通过乘法和通过,梯度将通过乘法和通过,好的,所以只要您有渐变,好的,所以只要您有渐变,训练该系统,梯度下降。
然后在这里我们可以替换,训练该系统,梯度下降,然后在这里我们可以替换,采样模块以及E Plus之间的附加模块,采样模块以及E Plus之间的附加模块,epsilon乘以方差的平方根就可以了。
epsilon乘以方差的平方根就可以了,您知道加法,您知道如何通过加法制作道具,您知道加法,您知道如何通过加法制作道具,因此,您可以获得编码器的梯度,这里是输出梯度,然后,因此,您可以获得编码器的梯度。
这里是输出梯度,然后,您可以计算出您知道有限成本的偏导数,您可以计算出您知道有限成本的偏导数,尊重这个模块中的参数,好吧,只要您知道直觉,尊重这个模块中的参数,好吧,只要您知道直觉。
这个KL的一部分可以让我在潜在空间中增强结构,这个KL的一部分可以让我在潜在空间中增强结构,我们就是这么想的那就是我希望您这样想的。
我们就是这么想的那就是我希望您这样想的,角色,所以让我们实际弄清楚这些东西是如何工作的,所以我们有。
角色,所以让我们实际弄清楚这些东西是如何工作的,所以我们有,在我的钱包中有两个字词,我们有第一个是,在我的钱包中有两个字词,我们有第一个是,重建损失,然后是第二项,重建损失,然后是第二项。
这些KL这个相对熵项还可以,所以在这种情况下,我们有一些Z,这些KL这个相对熵项还可以,所以在这种情况下,我们有一些Z,球形气泡好,在这种情况下为什么会有气泡,因为如果我们添加,球形气泡好。
在这种情况下为什么会有气泡,因为如果我们添加,一些额外的噪音,我们拥有的手段和手段基本上是,一些额外的噪音,我们拥有的手段和手段基本上是,这些点的中心正确,所以您在这里有一个均值在这里有一个均值。
这些点的中心正确,所以您在这里有一个均值在这里有一个均值,意思是在这里1分钟,然后是重建期限,意思是在这里1分钟,然后是重建期限,要做的是以下操作,如果这意味着如果这些气泡重叠,该怎么办。
要做的是以下操作,如果这意味着如果这些气泡重叠,该怎么办,它发生的原因是,如果您在这里有1分钟的时间,而另一个意思是一个气泡,它发生的原因是,如果您在这里有1分钟的时间,而另一个意思是一个气泡。
另一个气泡重叠,并且有一个区域,另一个气泡重叠,并且有一个区域,知道交叉点如何重建这两点,知道交叉点如何重建这两点,稍后在右侧,如果您有气泡,您将无法继续关注您,稍后在右侧,如果您有气泡。
您将无法继续关注您,这里,然后你有另一个气泡这里,这个气泡上的所有点都会,这里,然后你有另一个气泡这里,这个气泡上的所有点都会,在这里被重建为原始输入,所以您从原始点开始,在这里被重建为原始输入。
所以您从原始点开始,你去这里的潜在空间,然后你实际上并没有什么噪音,你去这里的潜在空间,然后你实际上并没有什么噪音,在这里有一个体积,那么你要讲另一点,而这另一点,在这里有一个体积,那么你要讲另一点。
而这另一点,如果这两个家伙重叠,现在在这里重建,如果这两个家伙重叠,现在在这里重建,您能在这里重构点吗,如果这些点在气泡中,我会,您能在这里重构点吗,如果这些点在气泡中,我会,如果这些点在气泡中。
我想回到这里的原始点,如果这些点在气泡中,我想回到这里的原始点,我想去另一点,但如果要点重叠,对不起,我想去另一点,但如果要点重叠,对不起,气泡是重叠的,那么你真的无法弄清楚去哪里,气泡是重叠的。
那么你真的无法弄清楚去哪里,对,那么重建项我们就要做重建,对,那么重建项我们就要做重建,学期将尝试使所有这些气泡尽可能地避免,学期将尝试使所有这些气泡尽可能地避免,重叠,因为如果它们重叠。
那么重建将不会很好,重叠,因为如果它们重叠,那么重建将不会很好,所以现在我们必须解决这个问题,所以有几种方法可以解决这个问题,所以现在我们必须解决这个问题,所以有几种方法可以解决这个问题。
您现在告诉我如何解决这个重叠的问题,为什么不,您现在告诉我如何解决这个重叠的问题,为什么不,我们在普通编码器中有这个重叠的问题,因为没有,我们在普通编码器中有这个重叠的问题,因为没有,方差AHA。
这意味着什么好,您可以翻译不存在的内容吗,方差AHA,这意味着什么好,您可以翻译不存在的内容吗,没有方差意味着球面不是球面,但它们是点,没有方差意味着球面不是球面,但它们是点,正确正确。
所以如果您只有一点,就永远不会正确重叠,正确正确,所以如果您只有一点,就永远不会正确重叠,它们必须是完全相同的点,但是只有在,它们必须是完全相同的点,但是只有在,编码器没有正确设置。
或者您输入的是相同的输入,我认为是,编码器没有正确设置,或者您输入的是相同的输入,我认为是,如果现在没有点,则两点不可能重叠,如果现在没有点,则两点不可能重叠,实际上,您知道音量可以重叠。
因为它们的含义是,实际上,您知道音量可以重叠,因为它们的含义是,无限量就可以了,所以一种选择是,无限量就可以了,所以一种选择是,凯拉方差,所以你有积分,现在这击败了整个变分,凯拉方差,所以你有积分。
现在这击败了整个变分,通过杀掉没有Spacey东西的东西,通过杀掉没有Spacey东西的东西,方差现在您不再知道两点之间发生了什么,方差现在您不再知道两点之间发生了什么,对,因为如果您有足够的空间。
例如他们可以容纳大量物品,则可以四处走走,对,因为如果您有足够的空间,例如他们可以容纳大量物品,则可以四处走走,如果这些都是要点,那么您始终可以找出潜在的潜在空间,如果这些都是要点。
那么您始终可以找出潜在的潜在空间,一旦离开此职位,您将不会有任何想法,一旦离开此职位,您将不会有任何想法,怎么走好吧首先,怎么走好吧首先,可以杀死方差另一种选择,我在这里向您展示,我另一种。
可以杀死方差另一种选择,我在这里向您展示,我另一种,选择是尽可能使这些气泡正确,如果它们尽可能远,选择是尽可能使这些气泡正确,如果它们尽可能远,尽可能在您的Python脚本中发生什么,所以如果这些谷底。
尽可能在您的Python脚本中发生什么,所以如果这些谷底,意味着下雨了他们会走得很远然后会增加很多很多,意味着下雨了他们会走得很远然后会增加很多很多,对,然后的问题是,你将获得无限的权利,对。
然后的问题是,你将获得无限的权利,东西会爆炸,因为所有这些价值都试图尽可能地走,东西会爆炸,因为所有这些价值都试图尽可能地走,这样它们就不会重叠,那就不好了,好吧,让我们,这样它们就不会重叠。
那就不好了,好吧,让我们,找出永恒变化的奥尔顿颜色如何解决此问题,找出永恒变化的奥尔顿颜色如何解决此问题,只是通过把观点分开来澄清你的意思,就像你把,只是通过把观点分开来澄清你的意思,就像你把。
它们在高维空间中不,不,不,因为它们在这里,所以每个如果,它们在高维空间中不,不,不,因为它们在这里,所以每个如果,这里没有所有的圆圈,所有的气泡都没有,这里没有所有的圆圈,所有的气泡都没有,只是指出。
即使我们有一些差异,他们现在也会占用一些空间,只是指出,即使我们有一些差异,他们现在也会占用一些空间,如果两个气泡占据的空间与另一个气泡重叠,则,如果两个气泡占据的空间与另一个气泡重叠,则。
重建错误会增加,因为您不知道如何返回,重建错误会增加,因为您不知道如何返回,到产生公平的原始点,因此网络,到产生公平的原始点,因此网络,编码器有两种选择,以减少这种重建误差,编码器有两种选择。
以减少这种重建误差,选项将是消除方差,以便您获得积分,选项将是消除方差,以便您获得积分,另一个选择是将所有这些点向任意方向发送,另一个选择是将所有这些点向任意方向发送,他们不会重叠好的好的是的。
这样很好,他们不会重叠好的好的是的,这样很好,重建错误,让这些东西飞来飞去,但是接下来让我们,重建错误,让这些东西飞来飞去,但是接下来让我们,介绍第二个学期,所以我真的建议您计算这些,介绍第二个学期。
所以我真的建议您计算这些,高斯分布与正态分布之间的相对熵,例如,高斯分布与正态分布之间的相对熵,例如,可以练习下周,但是如果您计算相对,可以练习下周,但是如果您计算相对,熵,你会得到这些东西。
基本上你会得到四个词,熵,你会得到这些东西,基本上你会得到四个词,每个人都应该了解这些根源,每个人都应该了解这些根源,不行,我只是在开玩笑,我实际上会在解释它,所以我们有,不行,我只是在开玩笑。
我实际上会在解释它,所以我们有,这个表达式让我们尝试更详细地分析它们的作用,这个表达式让我们尝试更详细地分析它们的作用,这些术语代表了您拥有这些变体的第一个术语-对数变体。
这些术语代表了您拥有这些变体的第一个术语-对数变体,-这样一来,如果我们将其绘制成图形,就可以看到一个线性函数,-这样一来,如果我们将其绘制成图形,就可以看到一个线性函数,之后,您知道之后-在x轴上。
然后在其他条件下,之后,您知道之后-在x轴上,然后在其他条件下,减去您减去一个对数,该对数将变为无穷大,就像您,减去您减去一个对数,该对数将变为无穷大,就像您,将负对数相加后等于零的无穷大,否则为。
将负对数相加后等于零的无穷大,否则为,只是你知道衰变,所以如果你将两者相加然后减去一个,就会得到,只是你知道衰变,所以如果你将两者相加然后减去一个,就会得到,这种可爱的功能,如果最小化此功能。
您只会得到一个,这种可爱的功能,如果最小化此功能,您只会得到一个,因此,这些内容向您展示了这些术语以及如何迫使这些领域,因此,这些内容向您展示了这些术语以及如何迫使这些领域,每个方向的半径为1。
因为如果尝试小于,每个方向的半径为1,因为如果尝试小于,你知道上涨的东西是疯狂的,如果这里的涨幅没有上升,你知道上涨的东西是疯狂的,如果这里的涨幅没有上升,像疯了一样,所以他们是一点点。
你至少大概知道所有的方式,像疯了一样,所以他们是一点点,你至少大概知道所有的方式,或您知道一半,但不会更小,因为您知道,或您知道一半,但不会更小,因为您知道,增加很多。
因此在这种情况下我们强制网络不崩溃,增加很多,因此在这种情况下我们强制网络不崩溃,这些气泡是为了使其过度生长,否则,这些气泡是为了使其过度生长,否则,他们在这里仍然受到惩罚。
所以我们在这里还有另一个术语,他们在这里仍然受到惩罚,所以我们在这里还有另一个术语,一切都平方,那是古典问题,那边的最小值,一切都平方,那是古典问题,那边的最小值。
所以这里的这个术语基本上是说它的意思应该被压缩,所以这里的这个术语基本上是说它的意思应该被压缩,趋于零,因此基本上,您会在这里得到这种额外的力,趋于零,因此基本上,您会在这里得到这种额外的力。
紫色的一面,现在您将所有这些气泡挤在一起,紫色的一面,现在您将所有这些气泡挤在一起,这个更大的气泡,所以在这里您可以获得一个,这个更大的气泡,所以在这里您可以获得一个,可变编码器。
这个非常可爱的东西有多可爱你怎么能装更多气泡,这个非常可爱的东西有多可爱你怎么能装更多气泡,这里唯一的参数告诉您变化的力量,这里唯一的参数告诉您变化的力量,编码器,它只是尺寸D,编码器,它只是尺寸D。
因为您知道给定尺寸,所以您总是知道可以有多少个气泡,因为您知道给定尺寸,所以您总是知道可以有多少个气泡,装在一个较大的气泡中,所以它只是您尺寸的函数,装在一个较大的气泡中,所以它只是您尺寸的函数,选择。
然后选择隐藏层,尽管重建是最后一次,选择,然后选择隐藏层,尽管重建是最后一次,第一项黄色术语是实际上推动气泡的术语,第一项黄色术语是实际上推动气泡的术语,距离更远,不会剩下的是什么使他们无法做。
距离更远,不会剩下的是什么使他们无法做,没错,所以重建将推动一切,因为我们拥有这些,没错,所以重建将推动一切,因为我们拥有这些,额外的取货量是正确的,因此,如果我们不取货,额外的取货量是正确的,因此。
如果我们不取货,重建期限不会推销任何东西,因为它不会重叠,重建期限不会推销任何东西,因为它不会重叠,鉴于我们实际上有一些差异,差异将具有这些,鉴于我们实际上有一些差异,差异将具有这些。
点实际上需要一些体积,因此,此重建将尝试,点实际上需要一些体积,因此,此重建将尝试,让那些点消失,所以如果您再次检查那些动画,我会告诉您,让那些点消失,所以如果您再次检查那些动画,我会告诉您。
所以我们一开始就有那些带有额外噪音的地方,所以我们一开始就有那些带有额外噪音的地方,得到的重建就是你知道将一切推开然后你得到,得到的重建就是你知道将一切推开然后你得到,它可以确保您这些小气泡不会崩溃。
然后,它可以确保您这些小气泡不会崩溃,然后,您有最后一个学期,这是春季学期,因为这是二次方,您有最后一个学期,这是春季学期,因为这是二次方,损失中的术语,基本上就是增加了这些额外的压力,例如。
损失中的术语,基本上就是增加了这些额外的压力,例如,所有的小家伙让你知道回到零,但它们不会重叠,所有的小家伙让你知道回到零,但它们不会重叠,因为有重建项,所以没有重叠,因为有重建项,所以没有重叠。
尺寸不小于一个,因为第一部分,尺寸不小于一个,因为第一部分,相对熵,然后将所有这些家伙再次停在二次部分,相对熵,然后将所有这些家伙再次停在二次部分,这是弹簧力,这是一个术语,需要,这是弹簧力。
这是一个术语,需要,像超参数一样进行了调整,因此beta是实际的,像超参数一样进行了调整,因此beta是实际的,此变体的原始版本alt编码没有beta,然后存在,此变体的原始版本alt编码没有beta。
然后存在,是一篇论文,它是编码器的beta版本,只是说您可以,是一篇论文,它是编码器的beta版本,只是说您可以,使用超级参数来更改您知道这两个术语的贡献,使用超级参数来更改您知道这两个术语的贡献。
最终的光泽度,该损失是带有KL的beta的第二个损失项,最终的光泽度,该损失是带有KL的beta的第二个损失项,是的,那么之间的正态分布率是,是的,那么之间的正态分布率是。
设计来自均值II和方差V的高斯,然后是,设计来自均值II和方差V的高斯,然后是,第二项将是这个正态分布,因此该项试图,第二项将是这个正态分布,因此该项试图,使Z尽可能接近空间V中的正态分布。
使Z尽可能接近空间V中的正态分布,维空间好,这个公式是通用的,所以我,维空间好,这个公式是通用的,所以我,建议您拿一支纸和笔,然后尝试写,建议您拿一支纸和笔,然后尝试写,高斯分布与正态分布之间的相对熵。
您应该得到,高斯分布与正态分布之间的相对熵,您应该得到,所有这些术语都是相对熵,是的,这些lkl是相对熵,所有这些术语都是相对熵,是的,这些lkl是相对熵,是的,所以只需查找相对熵的公式即可告诉您。
是的,所以只需查找相对熵的公式即可告诉您,基本上分布到多远,第一个分布到,基本上分布到多远,第一个分布到,是多元高斯,第二个将是正常,是多元高斯,第二个将是正常,分配权是的正态分布是不一样的。
分配权是的正态分布是不一样的,高斯(Gaussian)具有均值向量,而法线的协方差矩阵具有0个均值,高斯(Gaussian)具有均值向量,而法线的协方差矩阵具有0个均值,和协方差矩阵的恒等矩阵。
我们前面说过,尽管Z,和协方差矩阵的恒等矩阵,我们前面说过,尽管Z,不应该有协方差它应该是对角线对是的所以它就是,不应该有协方差它应该是对角线对是的所以它就是,将是对角线,但对角线上的值,将是对角线。
但对角线上的值,V Benson好吧,这是一个偏心的大法线,而不是一个居中的法线,V Benson好吧,这是一个偏心的大法线,而不是一个居中的法线,小法线,因此它不在中心,然后每个方向由缩放,小法线。
因此它不在中心,然后每个方向由缩放,该尺寸的标准偏差右侧,因此如果您的尺寸较大,该尺寸的标准偏差右侧,因此如果您的尺寸较大,一维的标准偏差意味着在那个方向上,一维的标准偏差意味着在那个方向上。
散布很有意义,但是D轴上有一条线,散布很有意义,但是D轴上有一条线,对,因为所有组件都是独立的,是的,对,因为所有组件都是独立的,是的,重建失去了最终输出与像素之间的像素明智距离。
重建失去了最终输出与像素之间的像素明智距离,原始图像我们上周看到的重建损失有两个,原始图像我们上周看到的重建损失有两个,重建的选项之一是二进制数据的二进制,我们,重建的选项之一是二进制数据的二进制。
我们,具有二元交叉熵,而另一个将是,具有二元交叉熵,而另一个将是,一个的实际值,以便您可以正确使用一半或一个DMS MSC,这样,一个的实际值,以便您可以正确使用一半或一个DMS MSC,这样。
这些是我们可以使用的重建损失,例如您与,这些是我们可以使用的重建损失,例如您与,那我的末日好,现在好不好,你也应该和年轻人谈谈,那我的末日好,现在好不好,你也应该和年轻人谈谈。
但是我们应该检查笔记本电脑,以便我们可以看到如何,但是我们应该检查笔记本电脑,以便我们可以看到如何,编码星星,也可以使用分布,因为在此之前,编码星星,也可以使用分布,因为在此之前,要点是。
在我们映射点之前,先映射两个点,然后再映射两个,要点是,在我们映射点之前,先映射两个点,然后再映射两个,现在就指向点,而不是将点映射到空间,然后将空间,现在就指向点,而不是将点映射到空间,然后将空间。
两点,但现在所有的空间都将被这些覆盖,两点,但现在所有的空间都将被这些覆盖,气泡是由于多种因素引起的,如果这些因素之间有一定间隔,气泡是由于多种因素引起的,如果这些因素之间有一定间隔,气泡。
那么您不知道如何从此处的该区域返回输入,气泡,那么您不知道如何从此处的该区域返回输入,正确的空间而不是变化的自动编码器可以让您,正确的空间而不是变化的自动编码器可以让您,表现良好的覆盖范围。
您知道这些潜在空间的覆盖范围还可以,表现良好的覆盖范围,您知道这些潜在空间的覆盖范围还可以,好,我看不到你,你想念你们,好吧,到目前为止,我可以订购问题吗?好,我看不到你,你想念你们,好吧,到目前为止。
我可以订购问题吗?
希望你能看到我刚刚提供的反馈信息能看到的东西是的,是的,所以,希望你能看到我刚刚提供的反馈信息能看到的东西是的,是的,所以。
工作得到PDL神鹰激活PT和,木星笔记本热潮好吧,所以我现在要覆盖dve,所以现在我要。
木星笔记本热潮好吧,所以我现在要覆盖dve,所以现在我要。
只需执行所有操作,以便这些东西开始训练,然后我要,只需执行所有操作,以便这些东西开始训练,然后我要,可以解释一切,所以一开始我会很重要,可以解释一切,所以一开始我会很重要,像往常一样所有随机的狗屎。
然后我有一个显示例程,我们不在乎不要添加,像往常一样所有随机的狗屎,然后我有一个显示例程,我们不在乎不要添加,它到笔记我有一些随机种子的默认值,这样,它到笔记我有一些随机种子的默认值,这样。
您将得到与我得到的数字相同的数字,然后在这里我只使用M nice数据集,您将得到与我得到的数字相同的数字,然后在这里我只使用M nice数据集,我们从打哈欠的设备在East进行修改。
理论上我可以设置CPU或GPU,我们从打哈欠的设备在East进行修改,理论上我可以设置CPU或GPU,之所以使用GP One,是因为我的Mac实际上具有GPU,然后我有了,之所以使用GP One。
是因为我的Mac实际上具有GPU,然后我有了,变差编码器好了,所以我的变差编码器分为两个部分,变差编码器好了,所以我的变差编码器分为两个部分,这里的编码器让我打开行号,所以我的编码器从784开始。
这里的编码器让我打开行号,所以我的编码器从784开始,这是此正方形的输入边的大小,例如在这种情况下为MD,这是此正方形的输入边的大小,例如在这种情况下为MD,是20,所以400,然后从D平方到2倍T。
那将是一半,是20,所以400,然后从D平方到2倍T,那将是一半,我的意思是一半将用于我的Sigma方差,另一方是,我的意思是一半将用于我的Sigma方差,另一方是,如果其他解码器只选择D。
您可以在这里看到Randy,如果其他解码器只选择D,您可以在这里看到Randy,从D到D平方,然后从这个平方到794,使我们匹配,从D到D平方,然后从这个平方到794,使我们匹配,输入维度。
最后我生病了,输入维度,最后我生病了,我没有S型信号,因为我的输入将从0限制为1,我没有S型信号,因为我的输入将从0限制为1,有从零到一的图像,那么这里有一个称为,有从零到一的图像,那么这里有一个称为。
三只首映式的眼睛,如果我们正在训练,我们将使用三个参数,三只首映式的眼睛,如果我们正在训练,我们将使用三个参数,化部分,您能再说一遍为什么在yeah中使用S形吗,化部分。
您能再说一遍为什么在yeah中使用S形吗,因为我的数据在零到一之间,所以我从,因为我的数据在零到一之间,所以我从,M错过了,他们是像数字的值一样的值,M错过了,他们是像数字的值一样的值,将会是0到1。
所以我想将这个模块输出到我的网络,将会是0到1,所以我想将这个模块输出到我的网络,从负无穷大到正无穷大的东西,从负无穷大到正无穷大的东西,sigmoid,当您说出值时,这些东西会像0到1一样发送信息。
sigmoid,当您说出值时,这些东西会像0到1一样发送信息,您指的是数字停用,您指的是数字停用,所以我使用敌人的数据集,这既是我的输入,也是我的,所以我使用敌人的数据集,这既是我的输入,也是我的。
正确定位,图像和这些图像的值将在一定范围内,正确定位,图像和这些图像的值将在一定范围内,在0到1之间,就像是一个真实值,每个像素可以在0和1之间,是的,我,在0到1之间,就像是一个真实值。
每个像素可以在0和1之间,是的,我,认为实际上输入是二进制的,所以输入都是0或1,但是我,认为实际上输入是二进制的,所以输入都是0或1,但是我,网络将输出介于0和1之间的实际范围。
网络将输出介于0和1之间的实际范围,抱歉,我们有参数化我们在这里做什么,所以我们进行参数化,抱歉,我们有参数化我们在这里做什么,所以我们进行参数化,给出亩和对数方差的解释稍后解释为什么我们使用对数方差。
给出亩和对数方差的解释稍后解释为什么我们使用对数方差,您在训练中知道我们会计算标准差,您在训练中知道我们会计算标准差,将对数方差乘以1/2,然后取指数,然后得到,将对数方差乘以1/2,然后取指数。
然后得到,与对数方差的标准偏差,然后得到我的epsilon,与对数方差的标准偏差,然后得到我的epsilon,只是从正态分布中采样而得,只是从正态分布中采样而得,在这里正确,所以标准偏差我得到一个尺寸。
我创建了一个新的张量,我,在这里正确,所以标准偏差我得到一个尺寸,我创建了一个新的张量,我,用正态分布数据填充它,然后返回epsilon x,用正态分布数据填充它,然后返回epsilon x,在偏差中。
我添加了MU,这是我之前向您展示的内容,如果我不是,在偏差中,我添加了MU,这是我之前向您展示的内容,如果我不是,训练我不必增加噪音,所以我可以简单地将亩退还给我,训练我不必增加噪音。
所以我可以简单地将亩退还给我,该网络以确定的方式转发模式如下,该网络以确定的方式转发模式如下,所以在这里,我们需要编码器获取输入,该输入将被重塑为,所以在这里,我们需要编码器获取输入,该输入将被重塑为。
您知道这些事情,基本上我将图像注册到,您知道这些事情,基本上我将图像注册到,向量,那么编码器将成为某种东西的掠夺输出,我将,向量,那么编码器将成为某种东西的掠夺输出,我将,形状为一个。
这样我的批量大小为2,然后是D,其中D是,形状为一个,这样我的批量大小为2,然后是D,其中D是,均值的维数和方差的维数,那么我有mu,均值的维数和方差的维数,那么我有mu。
均值只是这些D的这些人的第一部分,然后是负载,均值只是这些D的这些人的第一部分,然后是负载,变化将是另一个人,然后我有我的Z,变化将是另一个人,然后我有我的Z,作为我的潜在变量,考虑到我的亩。
这将是这三个参数,作为我的潜在变量,考虑到我的亩,这将是这三个参数,以及负载条为什么我使用负载条你告诉我为什么我使用负载条,以及负载条为什么我使用负载条你告诉我为什么我使用负载条,对对对。
因此假设方差仅在我计算时为正,对对对,因此假设方差仅在我计算时为正,该日志允许您正确输出编码器的完整实际范围,因此您,该日志允许您正确输出编码器的完整实际范围,因此您,可以使用整个真实范围。
然后将模型定义为该VA,然后将其发送,可以使用整个真实范围,然后将模型定义为该VA,然后将其发送,到这里的设备,我定义了优化优化器,到这里的设备,我定义了优化优化器,然后定义损失函数。
它是二进制交叉的两部分之和,然后定义损失函数,它是二进制交叉的两部分之和,输入和重构之间的熵,这就是,输入和重构之间的熵,这就是,IX帽子,然后是X,然后我尝试将它们全部加起来,然后是k KL。
IX帽子,然后是X,然后我尝试将它们全部加起来,然后是k KL,散度,所以我们有一个你知道线性的柱,然后你有,散度,所以我们有一个你知道线性的柱,然后你有,减去R的对数,它是对数向下翻转,然后减去1。
然后我们,减去R的对数,它是对数向下翻转,然后减去1,然后我们,有MU,然后我们尝试将这些东西最小化,有MU,然后我们尝试将这些东西最小化,好的,所以训练脚本非常简单,好的,所以训练脚本非常简单。
所以你有输出预测的模型X Hut让我,所以你有输出预测的模型X Hut让我,让我们在这里看到正向输出解码器MU和日志的输出,让我们在这里看到正向输出解码器MU和日志的输出,var。
所以在这里您可以得到模型,并在输入中得到X帽子m子,var,所以在这里您可以得到模型,并在输入中得到X帽子m子,Akbar您可以使用X hat X mu和dog bar X作为输入来计算损失。
Akbar您可以使用X hat X mu和dog bar X作为输入来计算损失,而且还有目标,然后我们知道,是的,我们为损失添加了项目,而且还有目标,然后我们知道,是的,我们为损失添加了项目。
清理前面步骤中的梯度,执行计算,清理前面步骤中的梯度,执行计算,偏导数,然后您步进,然后在这里我进行测试,偏导数,然后您步进,然后在这里我进行测试。
做一些缓存以备后用,所以我们开始时的初始错误为500,做一些缓存以备后用,所以我们开始时的初始错误为500,涟漪514,这是训练前的准备,任何动作都立即进行,涟漪514,这是训练前的准备。
任何动作都立即进行,下降到200,然后下降到100好的,现在我要向您展示,下降到200,然后下降到100好的,现在我要向您展示。
一些结果,这是我输入到网络和未经训练的输入,一些结果,这是我输入到网络和未经训练的输入。
网络重建当然看起来像是对的,但是好吧,所以,网络重建当然看起来像是对的,但是好吧,所以,我们可以继续前进,第一个纪元就很酷,我们可以继续前进,第一个纪元就很酷,第二个纪元第三个第四纪,以此类推。
看起来越来越好,第二个纪元第三个第四纪,以此类推,看起来越来越好,当然,所以我们现在能做些什么,例如现在我们可以做些什么。
当然,所以我们现在能做些什么,例如现在我们可以做些什么。
可以简单地从正态分布中简化Z,然后我对此进行解码,可以简单地从正态分布中简化Z,然后我对此进行解码,随机的东西,所以这不是来自我们的编码器,我现在向您展示,随机的东西,所以这不是来自我们的编码器。
我现在向您展示,每当您从分布中采样潜在的,每当您从分布中采样潜在的,变量应该在后面,所以这些是如何。
变量应该在后面,所以这些是如何。
从潜在分布中取样,您知道会被解码成某种形式,从潜在分布中取样,您知道会被解码成某种形式。
这里有九个我们到零我们有五个,所以一些地区,这里有九个我们到零我们有五个,所以一些地区。
很好地定义了9到9,但是其他地区喜欢这里,很好地定义了9到9,但是其他地区喜欢这里,或这里的东西或这里的数字14看起来并不像,或这里的东西或这里的数字14看起来并不像。
数字是因为这是为什么我们没有真正解决这里的问题,数字是因为这是为什么我们没有真正解决这里的问题,我刚训练的整个空间一分钟,我刚训练的整个空间一分钟,如果我训练了10分钟,那就可以正常工作了,所以。
如果我训练了10分钟,那就可以正常工作了,所以,在这里那些气泡还没有充满整个空间,而且是一样的,在这里那些气泡还没有充满整个空间,而且是一样的,没有这个的普通输出编码器会出现的问题。
没有这个的普通输出编码器会出现的问题,对编码器来说很正常的变化性东西,你根本不知道,对编码器来说很正常的变化性东西,你根本不知道,一种结构,介于两者之间的区域中任何一种定义好的行为,一种结构。
介于两者之间的区域中任何一种定义好的行为,alt编码器上变化的不同点,我们实际上将,alt编码器上变化的不同点,我们实际上将,空间并强制执行所有这些区域的重建,空间并强制执行所有这些区域的重建。
其实又有意义,所以让我们做一些可爱的事情,然后我。
其实又有意义,所以让我们做一些可爱的事情,然后我。
在这里完成,我只向您展示几个数字。
因此,我们选择其中两个,例如,我们选择三个和八个。
因此,我们选择其中两个,例如,我们选择三个和八个,让我在这里告诉你,所以我们现在想找到一个插值,让我在这里告诉你,所以我们现在想找到一个插值。
在五个到四个之间,这是我的五个重建的,而我们的四个,在五个到四个之间,这是我的五个重建的,而我们的四个,如果我在潜空间中执行线性插值,如果我在潜空间中执行线性插值,然后将其发送到解码器,我们得到这个。
所以五个变成四个。
然后将其发送到解码器,我们得到这个,所以五个变成四个,您可以看到的很慢,但是看起来像废话,让我们尝试获得一些,您可以看到的很慢,但是看起来像废话,让我们尝试获得一些,保持在流形上。
所以让我们举例说明这三个,这将是,保持在流形上,所以让我们举例说明这三个,这将是。
第一,然后让我们说这14,第一,然后让我们说这14,所以我在这里对这些家伙进行插值,您实际上可以看到我的输出编码器,所以我在这里对这些家伙进行插值,您实际上可以看到我的输出编码器,在这里解决了这类问题。
然后您现在可以看到三个人如何解决这些问题。
在这里解决了这类问题,然后您现在可以看到三个人如何解决这些问题,小边缘闭合,看起来像是八个右,所以它们看起来都像,小边缘闭合,看起来像是八个右,所以它们看起来都像,合法的不,这只是三三三三成为。
合法的不,这只是三三三三成为,右八,所以您可以通过潜入空间了解现在,右八,所以您可以通过潜入空间了解现在,可以重建输入空间中看起来合法的东西,可以重建输入空间中看起来合法的东西。
永远不会使用普通的输出编码器,最后我要向您展示,永远不会使用普通的输出编码器,最后我要向您展示,很少能很好地表示这列火车的嵌入方式,很少能很好地表示这列火车的嵌入方式,编码器。
所以在这里我只向您展示您知道的嵌入的集合,编码器,所以在这里我只向您展示您知道的嵌入的集合,测试数据集,然后执行类似降维的操作,然后,测试数据集,然后执行类似降维的操作,然后。
我将向您展示编码器如何将所有均值聚类在,我将向您展示编码器如何将所有均值聚类在。
礼顿空间,这是训练此变化笔记时得到的。
礼顿空间,这是训练此变化笔记时得到的,编码器,因此这是不训练网络的开始,编码器,因此这是不训练网络的开始,您仍然可以看到您知道数字簇,但是当您继续训练时,您仍然可以看到您知道数字簇,但是当您继续训练时。
好吧,至少你知道五本书之后,就得到了这些小组,好吧,至少你知道五本书之后,就得到了这些小组,分开,然后我想如果您继续训练,您应该会喜欢更多,分开,然后我想如果您继续训练,您应该会喜欢更多,分离好吧。
所以这里我基本上是在做测试部分,我得到了所有,分离好吧,所以这里我基本上是在做测试部分,我得到了所有。
意味着我的模型输出X hat mu和lock var right,所以我追加了我的意思,意味着我的模型输出X hat mu和lock var right,所以我追加了我的意思,他们我将所有新闻附加到此。
至少我将所有日志栏附加在此,他们我将所有新闻附加到此,至少我将所有日志栏附加在此,锁定条列表,并且在测试期间我将所有Y附加到这些标签列表中,锁定条列表,并且在测试期间我将所有Y附加到这些标签列表中。
部分正确,所以这是测试,所以我在这里有一个代码列表,部分正确,所以这是测试,所以我在这里有一个代码列表,我有MU日志栏,然后有设备,因此稍后在这里,我有MU日志栏,然后有设备,因此稍后在这里。
将这些列表放在我的字典中,然后在下面的下面计算一个。
将这些列表放在我的字典中,然后在下面的下面计算一个。
时代0,时代5和时代10的降维,所以我用这个,时代0,时代5和时代10的降维,所以我用这个。
TST是一种用于减少代码尺寸的技术,TST是一种用于减少代码尺寸的技术,现在20的尺寸高度是20,所以我适合我得到X,让我们,现在20的尺寸高度是20,所以我适合我得到X,让我们,先说前一千个成分。
然后是平均值的一千个样本,然后我,先说前一千个成分,然后是平均值的一千个样本,然后我,得到这些YZ基本上是这二十个二维投影,得到这些YZ基本上是这二十个二维投影。
维喵,好吧,然后我在此图表中向您展示这些二维,维喵,好吧,然后我在此图表中向您展示这些二维。
投影他们在训练网络之前会先看一个0框,因为这个是,投影他们在训练网络之前会先看一个0框,因为这个是,在第一个培训纪元之前,然后当我预订五个书时,您会看到,在第一个培训纪元之前,然后当我预订五个书时。
您会看到,网络让所有这些混乱都变成了现实,您可以将它更好地放在这里,网络让所有这些混乱都变成了现实,您可以将它更好地放在这里,没有想像出差异,我在想是否可以,没有想像出差异,我在想是否可以,也不确定。
因此这些点中的每一个都代表了,也不确定,因此这些点中的每一个都代表了,在编码器上训练变化后的平均值,在编码器上训练变化后的平均值,我没有代表这些方法实际上可以采取的措施。
我没有代表这些方法实际上可以采取的措施,这意味着应该在X 0处是随机的,随机性在编码器中,这意味着应该在X 0处是随机的,随机性在编码器中,但随后您仍然要向编码器和这些输入数字输入,因此输入。
但随后您仍然要向编码器和这些输入数字输入,因此输入,所有的数字都是相似的权利,所以如果您执行随机,所有的数字都是相似的权利,所以如果您执行随机,那些看起来相似的初始向量的变换。
那些看起来相似的初始向量的变换,您将拥有外观类似的转换版本,但随后,您将拥有外观类似的转换版本,但随后,例如,不一定像大多数人一样将它们组合在一起,例如,不一定像大多数人一样将它们组合在一起。
假设这些曾经让我打开颜色栏,所以我们可以看到,假设这些曾经让我打开颜色栏,所以我们可以看到,东西这么说,这些是零,东西这么说,这些是零,在这里,所以所有的零看起来都一样,因此即使是随机的,在这里。
所以所有的零看起来都一样,因此即使是随机的,这些零的投影将全部组合在一起,您可以看到,这些零的投影将全部组合在一起,您可以看到,而是紫色会散布在右边,所以这意味着力量,而是紫色会散布在右边。
所以这意味着力量,是的,有很多绘画方法,因为您知道有人正确,是的,有很多绘画方法,因为您知道有人正确。
如果您看到的是右侧,则最接近顶部的人不会如此,如果您看到的是右侧,则最接近顶部的人不会如此。
四肢几乎都在这里,接下来只有一小群,四肢几乎都在这里,接下来只有一小群,到九,因为你可以考虑如果你写四,到九,因为你可以考虑如果你写四,像这样,写九个权利非常相似,所以你有这种力量,像这样。
写九个权利非常相似,所以你有这种力量,在这里与九点非常接近,只是因为人们如何绘制,在这里与九点非常接近,只是因为人们如何绘制,特种部队还可以,但是他们仍然聚集在这里,特种部队还可以。
但是他们仍然聚集在这里。
所有这些东西四处散布,所以这很不好,所有这些东西四处散布,所以这很不好,但是他们告诉你,这个图在这里告诉你那里,但是他们告诉你,这个图在这里告诉你那里,整个图的零偏差很小,所以它向您显示。
整个图的零偏差很小,所以它向您显示,就像某种方式有一种特定的模式,它在这里非常集中,但是,就像某种方式有一种特定的模式,它在这里非常集中,但是,这些家伙真的不专心,所以我很好奇。
这些家伙真的不专心,所以我很好奇,其他一些类似动机或变式自动编码器的用法。
其他一些类似动机或变式自动编码器的用法。
就像这样,重点是两周前我在课堂上给你看的时候。
就像这样,重点是两周前我在课堂上给你看的时候,生成模型,您无法拥有经典大声的生成模型。
生成模型,您无法拥有经典大声的生成模型,编码器在这种情况下,我再次在这里训练,如果您,编码器在这种情况下,我再次在这里训练,如果您。
训练更长的时间,您可以在这里获得更好的表现,关键是,训练更长的时间,您可以在这里获得更好的表现,关键是。
我的输入来自这种随机分布,然后,我的输入来自这种随机分布,然后,向此随机数发送一个来自正常的随机数,向此随机数发送一个来自正常的随机数,分发,您在此解码器内部发送了一个,分发。
您在此解码器内部发送了一个,如果这是一个编码器,实际上是一个强大的功能,如果这是一个编码器,实际上是一个强大的功能,解码器,那么这些东西实际上会画出非常漂亮的形状或数字,例如。
解码器,那么这些东西实际上会画出非常漂亮的形状或数字,例如。
例如,这两张图片我向您展示了第一部分中的两个阶段,例如,这两张图片我向您展示了第一部分中的两个阶段,上课的时候,这些仅仅是你从我的随机数中取一个数字,上课的时候,这些仅仅是你从我的随机数中取一个数字。
您将其分配给解码器,解码器将被绘制,您将其分配给解码器,解码器将被绘制,你这幅非常漂亮的图画,无论你训练什么,都可以解码,你这幅非常漂亮的图画,无论你训练什么,都可以解码。
并且您不能使用标准输出编码器来获得此类属性,并且您不能使用标准输出编码器来获得此类属性,因为这里我们再次强制解码器重构有意义的,因为这里我们再次强制解码器重构有意义的,当从这个正态分布中取样时。
它们看起来很漂亮,当从这个正态分布中取样时,它们看起来很漂亮,因此,稍后我们可以从该正态分布中提取样本,因此,稍后我们可以从该正态分布中提取样本,解码器和解码器将生成看起来合法的东西。
解码器和解码器将生成看起来合法的东西,对,如果您没有训练解码器来执行良好的重建,对,如果您没有训练解码器来执行良好的重建,当您从这个正态分布中采样时,您将无法,当您从这个正态分布中采样时,您将无法。
实际上得到了有意义的东西,好了,这是下一次大收获,实际上得到了有意义的东西,好了,这是下一次大收获,我们将普遍看到有关蜂窝网络的一般信息,我们将普遍看到有关蜂窝网络的一般信息。
以及它们如何与我们今天看到的这些东西非常相似,以及它们如何与我们今天看到的这些东西非常相似。
Alfred哦,我有一个关于黄色气泡黄色的问题,是的,Alfred哦,我有一个关于黄色气泡黄色的问题,是的,每个黄色气泡都来自一个输入示例,是的,所以如果我们有1000个,我就不会。
每个黄色气泡都来自一个输入示例,是的,所以如果我们有1000个,我就不会,知道什么图像或一个想法安培意味着我们有1000个完全黄色,知道什么图像或一个想法安培意味着我们有1000个完全黄色,是的。
气泡和EGL气泡来自easy。we Z,是的,气泡和EGL气泡来自easy。we Z,分布以及添加到潜变量的噪声,因此气泡,分布以及添加到潜变量的噪声,因此气泡,来自这里,让我告诉你,如果我告诉你。
这个还好吗?来自这里,让我告诉你,如果我告诉你,这个还好吗?说好,所以在这里您得到这些X,这些X进入模型内部,说好,所以在这里您得到这些X,这些X进入模型内部,每当您通过模型发送这些X时。
它就会向内前进,因此X会,每当您通过模型发送这些X时,它就会向内前进,因此X会,在这里,然后进入编码器内部,然后从,在这里,然后进入编码器内部,然后从,给我这个moola季度。
我可以从中提取Mew和log栏,所以,给我这个moola季度,我可以从中提取Mew和log栏,所以,到目前为止,一切都像普通的编码器一样,到目前为止,一切都像普通的编码器一样,气泡来了。
所以我的Z现在来自这些自我修复的尝试,气泡来了,所以我的Z现在来自这些自我修复的尝试,如果我们处于自我修复状态,那么参数化将以不同的方式工作,如果我们处于自我修复状态,那么参数化将以不同的方式工作。
训练循环或我们不在训练循环中,因此,如果我们不在,训练循环或我们不在训练循环中,因此,如果我们不在,受训者循环,我只是返回了分钟数,所以当我使用,受训者循环,我只是返回了分钟数,所以当我使用。
再次测试零件,以便我获得编码器可以给我的最佳价值,再次测试零件,以便我获得编码器可以给我的最佳价值,培训相反会发生什么,所以我计算标准,培训相反会发生什么,所以我计算标准,偏离此日志栏。
所以我得到的日志栏除以二,然后取,偏离此日志栏,所以我得到的日志栏除以二,然后取,指数权,所以我有e到一半的木柴射击,这样您就可以得到,指数权,所以我有e到一半的木柴射击,这样您就可以得到。
知道标准偏差,然后知道ε就可以简单地是一个D,知道标准偏差,然后知道ε就可以简单地是一个D,正态分布的维向量样本,所以这是一个,正态分布的维向量样本,所以这是一个,来自此正态分布和正态分布的样本。
来自此正态分布和正态分布的样本,你知道它像一个D维的球体,对,你知道它像一个D维的球体,对,半径将是D的平方根,然后在末尾,半径将是D的平方根,然后在末尾,您只是简单地调整大小,重点是每次您呼叫时。
您只是简单地调整大小,重点是每次您呼叫时,非常参数化参数是函数,我可以得到不同的结果,非常参数化参数是函数,我可以得到不同的结果,epsilon因为epsilon是从正态分布采样的,所以。
epsilon因为epsilon是从正态分布采样的,所以,给一个亩,给一个日志栏,你将每次都变得与众不同,给一个亩,给一个日志栏,你将每次都变得与众不同,Epsilon的,因此这些东西在这里。
如果您称它为一百倍,Epsilon的,因此这些东西在这里,如果您称它为一百倍,会给你100个不同的点,它们都聚集在亩,半径为,会给你100个不同的点,它们都聚集在亩,半径为,您大致知道标准差。
所以这是返回您的直线,您大致知道标准差,所以这是返回您的直线,每次只有一个样本,但是如果在for循环中调用它,您将得到,每次只有一个样本,但是如果在for循环中调用它,您将得到,你知道一个点云。
它们都以亩为中心,你知道一个点云,它们都以亩为中心,半径还可以,所以这就是我们从采样中获得这些气泡的地方,半径还可以,所以这就是我们从采样中获得这些气泡的地方,这些东西对,如果您要100个样本。
我必须运行100次,这些东西对,如果您要100个样本,我必须运行100次,得到100倍,您必须遇到100倍,这些是参数化给出的,得到100倍,您必须遇到100倍,这些是参数化给出的。
您每次都知道一个不同的点,您每次都知道一个不同的点,位置,这类人知道数量,是的,这来自,位置,这类人知道数量,是的,这来自,亚当·你和玛丽·方差来自一个样本一个输入例子。
亚当·你和玛丽·方差来自一个样本一个输入例子,是的,所以我的一个输入X在这里给了我一亩,给了我一个负载棒,是的,所以我的一个输入X在这里给了我一亩,给了我一个负载棒,这个一亩好一本原木三月给我Z。
这是整体的一个样本,这个一亩好一本原木三月给我Z,这是整体的一个样本,分布,如果您在此处运行此功能1,000次,您将获得1,000次,分布,如果您在此处运行此功能1,000次,您将获得1,000次。
Z所有人都将立即取走这个音量,知道了,Z所有人都将立即取走这个音量,知道了,谢谢你,我当然喜欢自动编码器,谢谢你,我当然喜欢自动编码器,视线编码器和解码器总体来说是这样。
视线编码器和解码器总体来说是这样,实施,这在其中相当简单,实施,这在其中相当简单,像它这样的术语就像一对线性层一样,像它这样的术语就像一对线性层一样,乙状结肠最像我以前喜欢的样子,在CODIS中。
乙状结肠最像我以前喜欢的样子,在CODIS中,他们就像他的注意力一样,这是某种东西,他们就像他的注意力一样,这是某种东西,像这样基本,似乎很令人满意,像这样基本,似乎很令人满意,好吧。
他们通常是这个基本或更复杂的吗,我认为,好吧,他们通常是这个基本或更复杂的吗,我认为,垒球对我来说,所以我们在课堂上看到的一切都是我尝试过的东西,垒球对我来说。
所以我们在课堂上看到的一切都是我尝试过的东西,足以代表这些东西可以运行,足以代表这些东西可以运行,因此,您知道我正在笔记本电脑上运行MDS数据集,则可以运行以下几种,因此。
您知道我正在笔记本电脑上运行MDS数据集,则可以运行以下几种,这种测试和播放,所以今天我们已经看到了如何编码,这种测试和播放,所以今天我们已经看到了如何编码,您将其编码为彩色,而您所需的只是三个。
您将其编码为彩色,而您所需的只是三个,一行四行代码,就像之间有什么区别,一行四行代码,就像之间有什么区别,播放山峰代码数组,所以区别在于您需要谴责,播放山峰代码数组,所以区别在于您需要谴责,关于修复。
参数化表示Mitra是模块,关于修复,参数化表示Mitra是模块,方法,然后您就知道这三行了,所以您有了,方法,然后您就知道这三行了,所以您有了,像六行加上相对熵完全是,像六行加上相对熵完全是,不同。
所以它是完全正交的对,一件事会在,不同,所以它是完全正交的对,一件事会在,基于当前输入的架构,您可以使用,基于当前输入的架构,您可以使用,卷积网络,您可以使用循环网络,您可以使用任何网络,卷积网络。
您可以使用循环网络,您可以使用任何网络,想要而另一件事是您转换了确定性的事实,想要而另一件事是您转换了确定性的事实,网络到一个网络中,该网络使您可以采样,然后从,网络到一个网络中,该网络使您可以采样。
然后从,发行版还可以,所以我们从来不需要谈论发行版,发行版还可以,所以我们从来不需要谈论发行版,现在不知道如何用生成模型生成分布,现在不知道如何用生成模型生成分布,您实际上可以生成基本上是。
您实际上可以生成基本上是,用原始高斯弯曲旋转或变换任何东西,用原始高斯弯曲旋转或变换任何东西,对,所以我们有了这个多元高斯,然后解码器接受了这个,对,所以我们有了这个多元高斯,然后解码器接受了这个,球。
然后将其成形以使其看起来像输入,输入可能像,球,然后将其成形以使其看起来像输入,输入可能像,弯曲的东西,你在这里有这个气泡这个很大的气泡,然后,弯曲的东西,你在这里有这个气泡这个很大的气泡,然后。
您将解码器恢复到输入看起来像什么的样子,您将解码器恢复到输入看起来像什么的样子,您需要的全部取决于用于M的特定数据,这是,您需要的全部取决于用于M的特定数据,这是,如果您使用我们的卷积版本就足够了。
也许值得,如果您使用我们的卷积版本就足够了,也许值得,工作得更好,关键是该课程是关于变分编码器的,工作得更好,关键是该课程是关于变分编码器的,知道如何得到疯狂的东西,所有疯狂的东西只是你知道添加。
知道如何得到疯狂的东西,所有疯狂的东西只是你知道添加,到目前为止,我一直在教你这些事情,但是关于,到目前为止,我一直在教你这些事情,但是关于,编码器的变化,我认为这里大部分都涵盖了,编码器的变化。
我认为这里大部分都涵盖了,问题否好的好的,非常感谢您加入我们,问题否好的好的,非常感谢您加入我们,好吧,每个人都差不多离开了70%下周见,好吧,好吧。
P16:16.Week 9 – Lecture_ Group sparsity, world model, and generative adversarial net - 大佬的迷弟的粉丝 - BV1o5411p7AB
好的,我想我们可以开始了,这是第三部分,好的,我想我们可以开始了,这是第三部分,恩关于基于能量的模型的讲座恩,我们将继续,恩关于基于能量的模型的讲座恩,我们将继续,上次我们谈论的内容。
上次我们谈论的内容,关于稀疏编码,并简短地谈论gans,您会听到,关于稀疏编码,并简短地谈论gans,您会听到,明天从阿尔弗雷多(Alfredo)了解更多信息,然后再讨论。
明天从阿尔弗雷多(Alfredo)了解更多信息,然后再讨论,学习世界模型和类似的东西也可以,学习世界模型和类似的东西也可以,关于异国自我监督和无监督的一点,关于异国自我监督和无监督的一点。
那种您知道活跃的学习算法,那种您知道活跃的学习算法,目前正在研究主题,所以我上次谈论的一件事。
目前正在研究主题,所以我上次谈论的一件事,是稀疏的编码,我将仅提及,是稀疏的编码,我将仅提及。
非常简单的想法,其中包括,非常简单的想法,其中包括,结合稀疏编码或音频稀疏编码器,结合稀疏编码或音频稀疏编码器,经过歧视性训练,所以想像一下,经过歧视性训练,所以想像一下,我在这里向您展示的架构。
我在这里向您展示的架构,编码器,如果您将左边的第一个uh部分是uh,编码器,如果您将左边的第一个uh部分是uh,大部分类似于我在lista方法中讨论的编码器。
大部分类似于我在lista方法中讨论的编码器,因此,您从x变量开始,通过矩阵对其进行运行,因此,您从x变量开始,通过矩阵对其进行运行,然后通过非线性来运行,这可能是,然后通过非线性来运行,这可能是。
例子是这里,然后乘以结果,例子是这里,然后乘以结果,通过一些我们要学习的矩阵,通过一些我们要学习的矩阵,在此与编码输入的乘积,在此与编码输入的乘积,矩阵我们,然后将其传递给非线性,矩阵我们。
然后将其传递给非线性,您可以在这里多次重复这个小方块这个绿色方块,您可以在这里多次重复这个小方块这个绿色方块,这些基本上都是一个包含以下内容的层,这些基本上都是一个包含以下内容的层,矩阵或一堆卷积除了。
矩阵或一堆卷积除了,你知道一些预先存在的变量和非线性,你知道一些预先存在的变量和非线性,所以这是您知道的一种有趣的神经网络,所以这是您知道的一种有趣的神经网络,跳过连接,然后我们将对此进行培训。
跳过连接,然后我们将对此进行培训,神经网络来做三件事或三件事,神经网络来做三件事或三件事,不同的标准一个标准将是,不同的标准一个标准将是,嗯,只要重建x好,那么就会有一个解码矩阵,嗯,只要重建x好。
那么就会有一个解码矩阵,是要在输出上重现输入,而我们要这样做,是要在输出上重现输入,而我们要这样做,通过最小化平方误差,这就是,通过最小化平方误差,这就是,一次又一次地解码过滤器,这可能是卷积或。
一次又一次地解码过滤器,这可能是卷积或,取决于您喜欢的版本,而不是L1,取决于您喜欢的版本,而不是L1,特征向量上的准则,特征向量上的准则,使其稀疏,因此非常类似于稀疏的自动编码器,使其稀疏。
因此非常类似于稀疏的自动编码器,是我们上周讨论的那种类型,但后来,是我们上周讨论的那种类型,但后来,也将增加第三项,这第三项将是,也将增加第三项,这第三项将是,基本上是一个简单的线性分类器。
基本上是一个简单的线性分类器,尝试预测类别还可以,我们将,尝试预测类别还可以,我们将,训练系统以同时最小化所有三个条件,训练系统以同时最小化所有三个条件,所以这是一个稀疏的自动编码器。
它也试图找到能做得很好的代码,所以这是一个稀疏的自动编码器,它也试图找到能做得很好的代码,做预测工作,这是您可以的一种好方法,做预测工作,这是您可以的一种好方法。
您可以通过两种不同的方式查看此内容您可以将其查看为,您可以通过两种不同的方式查看此内容您可以将其查看为,倾向于产生良好标签的自动编码器,或者您可以看到,倾向于产生良好标签的自动编码器,或者您可以看到。
这是一个分类器多层分类器,这是一个分类器多层分类器,由自动编码器规范化的,由自动编码器规范化的,优点是通过强制系统查找,优点是通过强制系统查找,最后第二层的图示,最后第二层的图示,呃可以重建输入。
那么你基本上,呃可以重建输入,那么你基本上,使系统偏向于提取包含尽可能多的特征,使系统偏向于提取包含尽可能多的特征,有关输入的尽可能多的信息,这样的,如果需要,可以使功能更丰富,如果需要。
可以使功能更丰富,不会生成退化特征,而是生成包含尽可能多特征的特征,不会生成退化特征,而是生成包含尽可能多特征的特征,有关输入的尽可能多的信息,有关输入的尽可能多的信息,效果很好。
我认为这是一种未开发的方法,效果很好,我认为这是一种未开发的方法,训练神经网络,因为我们经常没有,训练神经网络,因为我们经常没有,足够的标签训练数据或何时,足够的标签训练数据或何时。
训练数据这样您就没有很多类别,训练数据这样您就没有很多类别,嗯,也许是两个或三个或十个经典问题,嗯,也许是两个或三个或十个经典问题,我们知道这往往会产生非常普通的退化特征。
我们知道这往往会产生非常普通的退化特征,在我们上次讨论的神经网络中,在我们上次讨论的神经网络中,然后迫使系统进行基本重建,然后迫使系统进行基本重建,告诉您您知道无法生成过于复杂的功能。
告诉您您知道无法生成过于复杂的功能,简并会产生某种形式的信息,您无法从中重构输入,简并会产生某种形式的信息,您无法从中重构输入,所以有点不错,您可以将其视为良好的正则化器,所以有点不错。
您可以将其视为良好的正则化器。
好的团队稀疏性和结构性稀疏性,所以有一些工作要做,好的团队稀疏性和结构性稀疏性,所以有一些工作要做,回溯到大约10年之前,实际上,这方面的第一项工作,回溯到大约10年之前,实际上,这方面的第一项工作。
约有20岁的鹅欧芹的想法是什么,约有20岁的鹅欧芹的想法是什么,意思是,这里是这个主意,意思是,这里是这个主意,训练系统以生成香料功能,而不仅仅是,训练系统以生成香料功能,而不仅仅是。
通过一堆卷积和值提取的正常特征,通过一堆卷积和值提取的正常特征,但基本上会产生稀疏的局部特征,但基本上会产生稀疏的局部特征,池化之后好了,所以您基本上有一个系统,池化之后好了,所以您基本上有一个系统。
由卷积非线性和池化组成,由卷积非线性和池化组成,您尝试使这些功能稀疏,这个想法可以追溯到许多不同的工作,这个想法可以追溯到许多不同的工作,ivarian和hoyer在2001年ica独立组件的背景下。
ivarian和hoyer在2001年ica独立组件的背景下,分析,然后您知道其他一些,分析,然后您知道其他一些,osindero在杰夫·伊顿的小组中发表论文。
osindero在杰夫·伊顿的小组中发表论文,嗯,然后karai呃,当时我真的是我的学生,嗯,然后karai呃,当时我真的是我的学生,2000年代末与我合影的卡尔·格雷格。
2000年代末与我合影的卡尔·格雷格,法国的朱利亚纳·梅雷尔(giuliana merrell)和其他一群人,法国的朱利亚纳·梅雷尔(giuliana merrell)和其他一群人。
关于结构空间编码的想法,关于结构空间编码的想法,这个想法基本上是你需要的,所以其中一些型号只有,这个想法基本上是你需要的,所以其中一些型号只有,编码器,其中一些只有解码器,有些是自动的,编码器。
其中一些只有解码器,有些是自动的,编码器正确,所以左侧的编码器在气道中,编码器正确,所以左侧的编码器在气道中,模型是仅编码器模型julia alex模型是仅解码器模型。
模型是仅编码器模型julia alex模型是仅解码器模型,编舞者模型基本上是一个自动编码器,编舞者模型基本上是一个自动编码器,我们上次讨论的类型的自动编码器,我们上次讨论的类型的自动编码器,嗯。
这是怎么工作的,让我们说一个仅编码器的模型,嗯,这是怎么工作的,让我们说一个仅编码器的模型,您有一个包含卷积的特征提取器,或者,您有一个包含卷积的特征提取器,或者。
也许只是在图像补丁的补丁上完全连接了矩阵,也许只是在图像补丁的补丁上完全连接了矩阵,示例,然后强制输出,示例,然后强制输出,在非线性之后而不是强迫,在非线性之后而不是强迫,要稀疏的是。
您放置了一个牵引层,而您,要稀疏的是,您放置了一个牵引层,而您,强制拉稀,这适用于所有三个,强制拉稀,这适用于所有三个,那些,所以这是一个更具体的例子,那些,所以这是一个更具体的例子,这是正确的版本。
这是正确的版本,为他的博士学位,这是他有一个稀疏的自动编码器的地方,为他的博士学位,这是他有一个稀疏的自动编码器的地方,w eyi的编码函数ge可以在,w eyi的编码函数ge可以在。
这种情况基本上只有两层,这种情况基本上只有两层,呃,有一个非线性,你有一个解码器,在这种情况下是线性wd,呃,有一个非线性,你有一个解码器,在这种情况下是线性wd,乘以e来评估变量z和该代理。
乘以e来评估变量z和该代理,变量而不是去l1它基本上通过了l2,变量而不是去l1它基本上通过了l2,但是在组上是l2,所以您采用z的一组分量,但是在组上是l2,所以您采用z的一组分量,您计算的是2范数。
而不是2范数的平方,您计算的是2范数,而不是2范数的平方,表示值之和的平方根,表示值之和的平方根,那些分量的正方形,那些分量的正方形,所以取每个分量计算平方,然后求和,所以取每个分量计算平方,然后求和。
这些平方的一组,然后计算该平方根,这些平方的一组,然后计算该平方根,这就是该组中的第二标准,这就是该组中的第二标准,然后针对多个组执行此操作,这些组可以重叠或,然后针对多个组执行此操作。
这些组可以重叠或,不重叠,您计算总和,这就是您的,不重叠,您计算总和,这就是您的,正则化器是您的稀疏性正则化器,那是什么,正则化器是您的稀疏性正则化器,那是什么,倾向于这样做基本上倾向于关闭最大组数。
倾向于这样做基本上倾向于关闭最大组数,好吧,系统基本上是稀疏的,所以它想要,好吧,系统基本上是稀疏的,所以它想要,一次但在一个组内的最小组数,一次但在一个组内的最小组数,因为这是一个组中的l2范数。
所以它不在乎有多少个单元,因为这是一个组中的l2范数,所以它不在乎有多少个单元,组内有这么多单位可以在组内,组内有这么多单位可以在组内,那么这是怎么做的,它基本上迫使系统,那么这是怎么做的。
它基本上迫使系统,分组以打开一个池功能,分组以打开一个池功能,同时正确,所以如果您有非常相似的功能,同时正确,所以如果您有非常相似的功能,具有额外的提取器,它们非常相似,过滤器与,具有额外的提取器。
它们非常相似,过滤器与,商业网,那么这些功能将倾向于,商业网,那么这些功能将倾向于,嗯,当您进行培训时,他们会尝试将自己分组,嗯,当您进行培训时,他们会尝试将自己分组,因为它们往往会一起被激活。
这是最小化的最佳方法,因为它们往往会一起被激活,这是最小化的最佳方法,一次激活的组数,一次激活的组数,为了得到那些有趣的,为了得到那些有趣的,图片在这里获得的方式是,图片在这里获得的方式是,这里的小组。
所以你在这里看,这里的小组,所以你在这里看,是不是我认为这是解码矩阵,所以这些是,是不是我认为这是解码矩阵,所以这些是,wd矩阵um的列,我们可以重建图像补丁,wd矩阵um的列,我们可以重建图像补丁。
从稀疏代码乘以那个矩阵,从稀疏代码乘以那个矩阵,但是我们要做的是将这些功能分组,但是我们要做的是将这些功能分组,分成36个块,因此我们将所有要素都安排在2d地图中,分成36个块。
因此我们将所有要素都安排在2d地图中,对图像的拓扑进行处理,我们可以选择所需的任何拓扑,对图像的拓扑进行处理,我们可以选择所需的任何拓扑,实际上,这实际上不是2D拓扑,而是toridol拓扑,实际上。
这实际上不是2D拓扑,而是toridol拓扑,因此左侧触摸顶部的右侧触摸底部,因此左侧触摸顶部的右侧触摸底部,因此它在拓扑上与金牛座相同,因此它在拓扑上与金牛座相同。
我们要做的是将一组36个要素重新组合到一个组中,我们要做的是将一组36个要素重新组合到一个组中,那些由36个特征组成的小组重叠了,那些由36个特征组成的小组重叠了,三列三行,所以我们有多组36个特征。
三列三行,所以我们有多组36个特征,六乘六移三,六乘六移三,作为一种推翻功能,但不提供空间,作为一种推翻功能,但不提供空间,因为这里没有空间这是一个免费的连接网络。
因为这里没有空间这是一个免费的连接网络,但它的味道有点像合并的味道,但它的味道有点像合并的味道,除了这里,您拉过36个功能,而您不拉开空间,除了这里,您拉过36个功能,而您不拉开空间,好吧,因此。
您可以计算出l2的总和,因此,您可以计算出l2的总和,每个组内功能的规范,每个组内功能的规范,这就是训练稀疏自动编码器时使用的正则化器,这就是训练稀疏自动编码器时使用的正则化器。
所以系统要做的是最小化任何,所以系统要做的是最小化任何,就像我之前所说的那样,就像我之前所说的那样,它重新组合了所有可能触发的相似功能,它重新组合了所有可能触发的相似功能,同时成组,因为组重叠。
同时成组,因为组重叠,创造出那些似乎在慢慢发展的功能集,创造出那些似乎在慢慢发展的功能集,绕点旋转,绕点旋转,因此,您由此获得的功能具有某种不变性,因此,您由此获得的功能具有某种不变性。
他们有一定的不变性,而不是转移,而是转向诸如,他们有一定的不变性,而不是转移,而是转向诸如,规模和类似的事情,无论系统决定如何,在这里,规模和类似的事情,无论系统决定如何,在这里。
选择2D拓扑的原因基本上只是您知道的,选择2D拓扑的原因基本上只是您知道的,它看起来很漂亮,但是你可以,它看起来很漂亮,但是你可以,选择您想要的x轴和,选择您想要的x轴和,在此图中的y轴是任意轴。
在此图中的y轴是任意轴,我有我什至不记得这里有多少功能,我有我什至不记得这里有多少功能,这可能是256个功能,我认为是16乘16。这可能是256个功能,我认为是16乘16。所以这里有256个隐藏的单位。
所以想像一个网络,所以这里有256个隐藏的单位,所以想像一个网络,12 x 12输入色块好输入图像是来自图像的色块,12 x 12输入色块好输入图像是来自图像的色块,和256 uh隐藏单元。
具有完全连接的完全连接,和256 uh隐藏单元,具有完全连接的完全连接,非线性,顶部还有另一层,非线性,顶部还有另一层,嗯,那就是编码器,然后你会,嗯,那就是编码器,然后你会,这组稀疏性。
然后解码器是线性的,这组稀疏性,然后解码器是线性的,好的,您在这里看到的是解码器的列,好的,您在这里看到的是解码器的列,并且它们以2D拓扑组织起来,但是它是任意的,并且它们以2D拓扑组织起来。
但是它是任意的,这些正方形中的每一个都是解码器的一列,这些正方形中的每一个都是解码器的一列,也对应于z分量的解码器的,也对应于z分量的解码器的,好吧,该要素是未来向量的组成部分,好吧。
该要素是未来向量的组成部分,因此,它们以16 x 16的矩阵进行组织,但这有点武断,因此,它们以16 x 16的矩阵进行组织,但这有点武断,只要您知道将它们放在矩阵中,然后我们。
只要您知道将它们放在矩阵中,然后我们,训练,因为他们参加了,训练,因为他们参加了,这种拓扑结构中的六乘六邻域,这种拓扑结构中的六乘六邻域,系统自然会学习类似的功能,系统自然会学习类似的功能。
在这个拓扑内附近可以,但是我可以选择,在这个拓扑内附近可以,但是我可以选择,任何类型的拓扑1d2d 3d甚至某些图形,任何类型的拓扑1d2d 3d甚至某些图形,只要是,只要是。
你知道图上的邻居之间会起作用,你知道图上的邻居之间会起作用,所以我在这里要做的就是重复这一点,所以我在这里要做的就是重复这一点,模式um可以显示某种形式,因为这是您知道的历史,模式um可以显示某种形式。
因为这是您知道的历史,嗯,告诉你你知道那些那些,嗯,告诉你你知道那些那些,这些模式是重复的,是周期性的,这些模式是重复的,是周期性的,以这种方式可视化的原因是,以这种方式可视化的原因是。
这是神经科学家戳戳时会观察到的东西,这是神经科学家戳戳时会观察到的东西,常见的初级视觉皮层中的电极,常见的初级视觉皮层中的电极,哺乳动物,但大多数具有良好视力的动物,哺乳动物。
但大多数具有良好视力的动物,他们看到附近有那种漩涡状的图案,他们看到附近有那种漩涡状的图案,神经元检测到相似的特征,这意味着它们是相似的定向边缘,神经元检测到相似的特征,这意味着它们是相似的定向边缘。
对定向的边缘和邻近区域敏感,对定向的边缘和邻近区域敏感,相似的神经元对相似的角度敏感,相似的神经元对相似的角度敏感,或类似比例的相同角度或,或类似比例的相同角度或,这样的事情,也许这就是你如何了解大脑。
这样的事情,也许这就是你如何了解大脑,组织它的神经元,组织它的神经元,基本上在,基本上在,复杂的单元格,相当于我们看到的牵引单元,复杂的单元格,相当于我们看到的牵引单元,这里,嗯,这是这里的另一个例子。
所以这个是,嗯,这是这里的另一个例子,所以这个是,呃不是在补丁程序级别,而是使用本地连接,呃不是在补丁程序级别,而是使用本地连接,但从某种意义上说它不是卷积的,因为它不使用呃共享的权重。
但从某种意义上说它不是卷积的,因为它不使用呃共享的权重,这样做的原因是让您知道一些半现实的,这样做的原因是让您知道一些半现实的,某种与生物学习的对应关系,某种与生物学习的对应关系。
您在哪里知道脑癌中的神经元,您在哪里知道脑癌中的神经元,不能正确分配权重,因为它们最终变得相似,因为,不能正确分配权重,因为它们最终变得相似,因为,您知道他们使用某种无监督的学习方法进行训练,但是。
您知道他们使用某种无监督的学习方法进行训练,但是,据我们所知,在大脑中没有共享的东西。
据我们所知,在大脑中没有共享的东西,所以有人问,如果你是一个类似的类似策略。
所以有人问,如果你是一个类似的类似策略,使用分类器和常规训练自动编码器,使用分类器和常规训练自动编码器,正则化可以应用于编码器的变体,正则化可以应用于编码器的变体,是否已经研究过是否可行。
是否已经研究过是否可行,对于第一张幻灯片,您可以看到,嗯,基本上,对于第一张幻灯片,您可以看到,嗯,基本上,在变体式自动编码器中添加噪声,并且,在变体式自动编码器中添加噪声,并且。
强迫稀疏基本上是两种方法,强迫稀疏基本上是两种方法,达到相同的目的,即降低容量,达到相同的目的,即降低容量,图例变量的减少代码的容量,图例变量的减少代码的容量,由自动编码器提取的,这是阻止系统。
由自动编码器提取的,这是阻止系统,运行琐碎的身份功能,这将无用,运行琐碎的身份功能,这将无用,正确的,以及我们最近几次谈论的内容,正确的,以及我们最近几次谈论的内容,是事实,如果您减少信息容量,是事实。
如果您减少信息容量,你的代码的潜在变量,你的代码的潜在变量,因此,您还可以最大程度地减少,因此,您还可以最大程度地减少,可以消耗低能量的空间还可以,因为您限制了,可以消耗低能量的空间还可以。
因为您限制了,代码的配置,因此您,代码的配置,因此您,可以限制可以消耗低能量的空间,可以限制可以消耗低能量的空间,所以本质上讲,用l1或稀疏性进行正则化的想法,所以本质上讲。
用l1或稀疏性进行正则化的想法,这样的事情或在代码中增加噪音,这样的事情或在代码中增加噪音,限制代码规范可以达到以下目的:限制代码规范可以达到以下目的:为了限制音量而限制代码的容量。
为了限制音量而限制代码的容量,可能消耗低能量的空间,因此如果您训练零件,可能消耗低能量的空间,因此如果您训练零件,通过最小化重构误差来降低空间能量,通过最小化重构误差来降低空间能量,在您的训练样本上。
剩下的空间会自动变大,在您的训练样本上,剩下的空间会自动变大,能量,因为容量,能量,因为容量,肯塔基州的能量有限,所以这只是回顾一下,肯塔基州的能量有限,所以这只是回顾一下,嗯。
我们在上个星期和几个星期前谈到,嗯,我们在上个星期和几个星期前谈到,这就是这种选择,这就是这种选择,因此,这些架构方法是,因此,这些架构方法是,对比方法,您可以显式提高,对比方法,您可以显式提高。
不良样本的能量,这意味着您必须提出一个,不良样本的能量,这意味着您必须提出一个,好主意,您知道生成不良样本的好方法,好主意,您知道生成不良样本的好方法,那样的话好吧,再记得那两个,那样的话好吧。
再记得那两个,方法类型收缩方法会降低训练的能量,方法类型收缩方法会降低训练的能量,样本可以通过破坏,样本可以通过破坏,原始样本或通过做梯度干扰,原始样本或通过做梯度干扰,梯度下降。
你知道对比度发散这样的事情,梯度下降,你知道对比度发散这样的事情,或通过某种方式生成对比点um,或通过某种方式生成对比点um,我们已经看到了许多不同的对比方法,然后,我们已经看到了许多不同的对比方法。
然后,另一种方法是限制代码的容量,另一种方法是限制代码的容量,或限制某种物质的体积,这些物质可以消耗较低的能量,或限制某种物质的体积,这些物质可以消耗较低的能量,自动编码器或预测变量的上下文,这意味着。
自动编码器或预测变量的上下文,这意味着,限制代码的容量,并且有很多方法可以做到这一点,限制代码的容量,并且有很多方法可以做到这一点,一种方法是通过稀疏性一种方法是通过添加噪声。
一种方法是通过稀疏性一种方法是通过添加噪声,限制东方的规范,我们还有其他方法,限制东方的规范,我们还有其他方法,每当您在谈论小组之前,我们都会在稍后讨论,每当您在谈论小组之前,我们都会在稍后讨论。
稀疏性,您只汇总了一些样本,稀疏性,您只汇总了一些样本,像一些小范围的索引是什么,像一些小范围的索引是什么,那个pj也许我不是ej是一个团体它是一个游泳池。
那个pj也许我不是ej是一个团体它是一个游泳池,所以想像这是一个游泳池,所以想像这是一个游泳池,卷积网,但池而不是,卷积网,但池而不是,放置在空间上方也会覆盖功能,放置在空间上方也会覆盖功能。
完全连接的网络就可以了,完全连接的网络就可以了,只是功能的组件好,所以ppj就像一组索引pj是一个,只是功能的组件好,所以ppj就像一组索引pj是一个,z的分量的z的uh索引的子集。
z的分量的z的uh索引的子集,是的,谢谢,所以这里是六人一组,是的,谢谢,所以这里是六人一组,恰好是该拓扑中邻居的z的分量,恰好是该拓扑中邻居的z的分量,那就是一个p,下一个p是,那就是一个p。
下一个p是,相似的六乘六平方乘以三个像素,相似的六乘六平方乘以三个像素,到顶部或左侧或底部的左侧,好吧,好吧,底部好吧,谢谢,到顶部或左侧或底部的左侧,好吧,好吧,底部好吧,谢谢。
两组之间的重叠是什么样的,两组之间的重叠是什么样的,如果可以的话,表示此拓扑,如果可以的话,表示此拓扑,好的,因此,在此实验中,您知道与我们刚才的实验非常相似,因此,在此实验中。
您知道与我们刚才的实验非常相似,谈到,除了这里,我们有本地联系,谈到,除了这里,我们有本地联系,所以我们有一个输入这是一个二维输入,所以我们有一个输入这是一个二维输入,仅代表它的一维版本。
而且我们在一个位置上有多个单位,而且我们在一个位置上有多个单位,呃,看着输入的一部分,就是输入上的本地补丁,呃,看着输入的一部分,就是输入上的本地补丁,然后这些单元组中的那些是。
然后这些单元组中的那些是,那种你知道很多次复制过,但是,那种你知道很多次复制过,但是,没有共享的权重,所以单位,没有共享的权重,所以单位,这些单位在输入上无处不在,但它们的权重却不。
这些单位在输入上无处不在,但它们的权重却不,共享好,他们只是本地连接,共享好,他们只是本地连接,所以我想我不太了解,所以我想我不太了解,um的特征池的总体概念,我的意思是如果我考虑一下。
um的特征池的总体概念,我的意思是如果我考虑一下,我们在卷积中使用的像池这样的术语,我们在卷积中使用的像池这样的术语,网络比它直接但,网络比它直接但,我不太了解我们如何使用功能池。
我不太了解我们如何使用功能池,让我让我画一幅画,也许会很清楚,所以,让我让我画一幅画,也许会很清楚,所以,您可以从输入向量开始乘以,您可以从输入向量开始乘以,矩阵或通过某种形式传递通过。
矩阵或通过某种形式传递通过,可能具有值以及内部任何或多个矩阵的编码器权限,可能具有值以及内部任何或多个矩阵的编码器权限,好吧,也许是多层,你得到了未来的载体,好吧,也许是多层,你得到了未来的载体,好吧。
让我们称它为z,而现在,您要做的是,好吧,让我们称它为z,而现在,您要做的是,本质上是这样,在这种情况下,您将其分为几组,本质上是这样,在这种情况下,您将其分为几组,不重叠,您可以计算,不重叠。
您可以计算,在这些组之一中,计算平方根,在这些组之一中,计算平方根,我属于这些池的那些zi的平方和的总和,我属于这些池的那些zi的平方和的总和,好吧,它被称为p,因为它是一个游泳池,好了。
您可以对所有组执行此操作,好吧,它被称为p,因为它是一个游泳池,好了,您可以对所有组执行此操作,对,所以您在这里得到的输出在这里,对,所以您在这里得到的输出在这里,看起来非常像推子层的输出。
看起来非常像推子层的输出,在转换中,这不是常规的网络,好吧,在转换中,这不是常规的网络,好吧,此处已连接网络,但结果相同,此处已连接网络,但结果相同,在我刚刚展示的示例中,这就是您的正则化器。
在我刚刚展示的示例中,这就是您的正则化器,你拿z,这就是你发送到的,你拿z,这就是你发送到的,我的解码器矩阵可以重建输入,所以这是y这是y,我的解码器矩阵可以重建输入,所以这是y这是y,条是对,条是对。
重建,这把这个合并的层放在这里是,重建,这把这个合并的层放在这里是,仅用于计算正则化器,不是,仅用于计算正则化器,不是,实际上是用来重建的,实际上是用来重建的,直接从稀疏代码,但它看起来非常像。
直接从稀疏代码,但它看起来非常像,现在拉层,如果这是呃,如果这是一个卷积网,现在拉层,如果这是呃,如果这是一个卷积网,然后是那个尺寸或功能,然后是那个尺寸或功能,将是功能,但您将有多个,将是功能。
但您将有多个,要素地图好,所以我代表该要素,要素地图好,所以我代表该要素,垂直尺寸,则编码器将做多个,垂直尺寸,则编码器将做多个,卷积,并且还会生成多个特征图,也许更大,卷积,并且还会生成多个特征图。
也许更大,数,然后我们将在这里进行拉动,然后我们将在这里进行拉动,是布丁,所以每个,拉动后,我们将在空间以及,拉动后,我们将在空间以及,覆盖特征并计算总和的平方根,覆盖特征并计算总和的平方根。
那里的正方形,这在拉动输出中给了我们一个输出,那里的正方形,这在拉动输出中给了我们一个输出,然后我们有多组这样的功能,然后我们有多组这样的功能,不同的拉力,所以无论是否,不同的拉力,所以无论是否。
这是卷积的还是不是卷积的,你会停下来,这是卷积的还是不是卷积的,你会停下来,空间和要素类型,但嗯,空间和要素类型,但嗯,如果您不进行卷积,则只需覆盖特征,就可以知道,如果您不进行卷积,则只需覆盖特征。
就可以知道,建立不变量,无论它是什么,建立不变量,无论它是什么,公民认为嗯,认为有道理,公民认为嗯,认为有道理,清楚地回答了你的问题吗,清楚地回答了你的问题吗,是的,我想这很清楚,谢谢,是的。
我想这很清楚,谢谢,嗯,当您拆分z时,我有一个问题要问,嗯,当您拆分z时,我有一个问题要问,分成几组,然后冷却,这些组会重叠吗,分成几组,然后冷却,这些组会重叠吗,对,所以在我在这里展示的示例中。
它们并不重叠,但是您可以,对,所以在我在这里展示的示例中,它们并不重叠,但是您可以,他们重叠好,所以我们说,他们重叠好,所以我们说,特征向量z,我可以在这里带一个游泳池,在这里带一个游泳池。
这里和这里带一个游泳池,这些团体,我可以在这里带一个游泳池,在这里带一个游泳池,这里和这里带一个游泳池,这些团体,重叠,如果我这样做,我做小组稀疏,这些,重叠,如果我这样做,我做小组稀疏,这些。
其他群体将要发生的是我要,其他群体将要发生的是我要,在这里具有一系列不断变化的功能,在这里具有一系列不断变化的功能,从一端到另一端,因为系统将要,从一端到另一端,因为系统将要,在相似的池特征中分组。
因此,在相似的池特征中分组,因此,重叠部分会不断变化,重叠部分会不断变化,它们,以便它们现在在矢量上缓慢变化,它们,以便它们现在在矢量上缓慢变化,在我在幻灯片中展示的图片中,而不是组织。
在我在幻灯片中展示的图片中,而不是组织,在1d拓扑中的z功能在2d拓扑中进行了组织,在1d拓扑中的z功能在2d拓扑中进行了组织,然后我将群组设为2维,所以我选择了,然后我将群组设为2维,所以我选择了。
六乘六方块呃,这是一组,然后下一组将是另一组,六乘六方块呃,这是一组,然后下一组将是另一组,六乘六挡,有一些重叠,然后是下一组,六乘六挡,有一些重叠,然后是下一组,还会再乘以六乘六挡。
还会再乘以六乘六挡,也许我有另一个,因为我有一个torito,也许我有另一个,因为我有一个torito,使这些人和这些人正常的拓扑,使这些人和这些人正常的拓扑,然后你知道类似的事情。
然后你知道类似的事情,你知道滑倒等等,所以基本上,你知道滑倒等等,所以基本上,是那些六乘六的窗口,它们被三移并重叠,是那些六乘六的窗口,它们被三移并重叠,所以这就是你得到那种不断变化的呃。
所以这就是你得到那种不断变化的呃,沿尺寸特征,沿尺寸特征,我可以同时拥有两个维度,我可以同时拥有两个维度,您选择将其组织成3d拓扑,您选择将其组织成3d拓扑,或进入某种树,所以ii取z的所有分量。
或进入某种树,所以ii取z的所有分量,我用某种图表来组织它们,我用某种图表来组织它们,也许是一棵树,所以这叫做结构性结构稀疏性,所以这叫做结构性结构稀疏性,取决于你怎么做,我猜,然后小组将是这样的事情。
取决于你怎么做,我猜,然后小组将是这样的事情,嗯,这将是一个小组,嗯,这将是一个小组,那么也许这也是一个团体,那么也许这也是一个团体,嗯,我可以组织一个小组,嗯,我可以组织一个小组,像这样的俄罗斯娃娃。
呃,将会发生什么,像这样的俄罗斯娃娃,呃,将会发生什么,那些在许多组中的单位组成的组往往会非常稀疏,那些在许多组中的单位组成的组往往会非常稀疏,而分组中的几组中的单元将趋向于。
而分组中的几组中的单元将趋向于,少一些,所以如果你做某事的话,少一些,所以如果你做某事的话,像这样一棵树,这里发生的是,像这样一棵树,这里发生的是,中心的特征往往并不稀疏,中心的特征往往并不稀疏。
真正可以检测到的东西,真正可以检测到的东西,非常通用的功能,然后在树的第一层,非常通用的功能,然后在树的第一层,他们会有点稀疏,所以他们会有点,他们会有点稀疏,所以他们会有点。
光滑的边缘提取器或类似的东西,光滑的边缘提取器或类似的东西,然后你越进入树内越多,然后你越进入树内越多,每个功能都进入大量池,每个功能都进入大量池,因此他们会变得越来越稀疏,所以最终他们被。
因此他们会变得越来越稀疏,所以最终他们被,稀疏,这意味着他们最终变得更具选择性,稀疏,这意味着他们最终变得更具选择性,对于特定功能,会发生什么,对于特定功能,会发生什么,当您显示图像时。
它倾向于偏向激活沿呃的功能,当您显示图像时,它倾向于偏向激活沿呃的功能,那棵树上一个特定的分支,因为那是最好的方法,那棵树上一个特定的分支,因为那是最好的方法,尽量减少一次使用的池的数量,以便。
尽量减少一次使用的池的数量,以便,称为结构稀疏,嗯,关于这个,有很多论文,嗯,关于这个,有很多论文,茱莉亚·梅瑞尔,所以这回去,茱莉亚·梅瑞尔,所以这回去,大约十年前。
我的意思是他们与人合着了该资深作者是弗朗西斯,我的意思是他们与人合着了该资深作者是弗朗西斯,我真的把参考放在一张幻灯片中,我真的把参考放在一张幻灯片中,我的小组也有一篇论文。
作者是亚瑟·施拉姆(arthur schlamm),我的小组也有一篇论文,作者是亚瑟·施拉姆(arthur schlamm),一分钟后我会去哪儿你能解释为什么分组,一分钟后我会去哪儿你能解释为什么分组。
正则化实际上有助于很好地将相似的特征分组,正则化实际上有助于很好地将相似的特征分组,这是一个很好的问题,呃首先对您有帮助,这是一个很好的问题,呃首先对您有帮助,嗯,答案还不清楚,所以这些实验已经完成了。
嗯,答案还不清楚,所以这些实验已经完成了,前一阵子才真正开始计算,前一阵子才真正开始计算,可用,并且数据是可用的,这确实可以完成工作,可用,并且数据是可用的,这确实可以完成工作,在很大程度上。
这通常被视为,在很大程度上,这通常被视为,对此感兴趣的人对两件事感兴趣,对此感兴趣的人对两件事感兴趣,对无监督跑步感兴趣,例如,对无监督跑步感兴趣,例如,图像恢复之类的事情耶利米正在做的事情。
图像恢复之类的事情耶利米正在做的事情,嗯,他们对无监督的明星都感兴趣,嗯,他们对无监督的明星都感兴趣,进行预训练,因为当时数据集非常小,进行预训练,因为当时数据集非常小,因为训练卷积网太小。
所以他们不得不,因为训练卷积网太小,所以他们不得不,是某种我感兴趣的预训练程序,所以,是某种我感兴趣的预训练程序,所以,这就是我们现在再次自我监督的动机,这就是我们现在再次自我监督的动机,garnie。
但其中许多方法尚未实现,garnie,但其中许多方法尚未实现,当数据集被删除时,他们倾向于很好地工作,当数据集被删除时,他们倾向于很好地工作,很小,所以他们倾向于改善,很小,所以他们倾向于改善。
呃的性能,如果您说一个合成网,呃的性能,如果您说一个合成网,使用一种方法对它进行了预训练,因此使用的方法与,使用一种方法对它进行了预训练,因此使用的方法与,呃,我早先展示过,所以有点像,呃。
我早先展示过,所以有点像,这但是卷积,所以使编码器和解码器,这但是卷积,所以使编码器和解码器,卷积和呃,并且在复杂细胞上以良好的稀疏性进行训练,然后,卷积和呃,并且在复杂细胞上以良好的稀疏性进行训练。
然后,在您完成对系统的预培训之后,您就摆脱了,在您完成对系统的预培训之后,您就摆脱了,解码器,您仅将编码器用作特征提取器,解码器,您仅将编码器用作特征提取器,嗯,说常规网络的第一层,嗯。
说常规网络的第一层。
然后在它上面再贴上第二层,好吧,让我审阅一下,然后在它上面再贴上第二层,好吧,让我审阅一下,一点点,所以你开始从一个,一点点,所以你开始从一个,用你的形象。
你有一个编码器,基本上是卷积,你有一个编码器,基本上是卷积,值,仅此组合值就可以了,仅此组合值就可以了,此后需要某种缩放层,此后需要某种缩放层,案例,你和团队一起训练,案例,你和团队一起训练,分组为正。
所以您有一个线性解码器,分组为正,所以您有一个线性解码器,并且您有点重构输入,并且您拥有,并且您有点重构输入,并且您拥有,一个,你这里有一个标准,这是第1组,你这里有一个标准,这是第1组,好吧。
所以这是一个小组的总和,抱歉,我称这是一个很好的小组,好吧,所以这是一个小组的总和,抱歉,我称这是一个很好的小组,组中i的总和的平方根,组中i的总和的平方根,zi平方好了,这是很好的稀疏性。
所以您可以训练这个有点稀疏的呃,zi平方好了,这是很好的稀疏性,所以您可以训练这个有点稀疏的呃,具有良好稀疏性的自动编码器,然后您所要做的就是,具有良好稀疏性的自动编码器,然后您所要做的就是。
您刚刚的稀疏层,您刚刚的稀疏层,用作正则化器,用作正则化器,因此您基本上消除了um,将这部分从网络中删除了,因此您基本上消除了um,将这部分从网络中删除了,拿起鸡皮d确实是,拿起鸡皮d确实是。
拉层l2拉层,然后将其粘贴在此处,拉层l2拉层,然后将其粘贴在此处,好吧,这基本上是l2拉,但它的架构与您使用的架构相同,但它的架构与您使用的架构相同,嗯,您知道鹅群城市,嗯,您知道鹅群城市。
然后将其用作特征提取器,然后将其用作特征提取器,好吧,就像组合网的第一对层一样,好吧,就像组合网的第一对层一样,合成值拉好,用此l2拉而不是最大拉,然后您,合成值拉好,用此l2拉而不是最大拉,然后您。
可以重复此过程,您可以训练该网络的另一个实例,可以重复此过程,您可以训练该网络的另一个实例,我要在这里有几层,我要在这里有几层,解码器具有此l2 uh拉和稀疏性标准。
解码器具有此l2 uh拉和稀疏性标准,训练它以重建其输入,然后将拉力放在顶部,训练它以重建其输入,然后将拉力放在顶部,消除这种情况,现在我们已经为您提供了预先培训,消除这种情况。
现在我们已经为您提供了预先培训,两层完成好了,这是一些,两层完成好了,这是一些,人们称堆叠式音频编码器还可以,所以您可以训练,人们称堆叠式音频编码器还可以,所以您可以训练,自动编码器提取特征。
然后您再生成,自动编码器提取特征,然后您再生成,具有自动编码器那部分的编码器的功能,而您,具有自动编码器那部分的编码器的功能,而您,在顶层火车上粘贴另一层作为另一个编码器,然后继续前进。
在顶层火车上粘贴另一层作为另一个编码器,然后继续前进,而且这里唯一的特点是对这种自动编码器进行了训练,而且这里唯一的特点是对这种自动编码器进行了训练,与你知道通过产生环境特征,与你知道通过产生环境特征。
群组稀疏性基本上是将所有可能的子树作为群组中的,群组稀疏性基本上是将所有可能的子树作为群组中的,以前的示例,嗯,这取决于您,以前的示例,嗯,这取决于您,您在这里使用什么结构可以使用多个树。
您在这里使用什么结构可以使用多个树,如果您想用多种功能来表示,如果您想用多种功能来表示,即使是低频输入,也完全取决于您,即使是低频输入,也完全取决于您,嗯,你知道那就像你买得起,嗯。
你知道那就像你买得起,呃,你还能做的就是用你知道的一棵大树来训练系统,呃,你还能做的就是用你知道的一棵大树来训练系统,必要,然后修剪树,必要,然后修剪树,每当有不使用或很少使用的分支。
每当有不使用或很少使用的分支,好的,这是我在这里展示的实验,好的,这是我在这里展示的实验,类似,但是只有本地连接,没有,类似,但是只有本地连接,没有,没有重量分享,而您在这里看到的又是功能的这种组织。
而您在这里看到的又是功能的这种组织,就神经科学家所说的风车模式而言,就神经科学家所说的风车模式而言,所以风车模式是那些模式,所以风车模式是那些模式,方向选择性随您而不断变化,方向选择性随您而不断变化。
绕开那些红点之一,以便您采取那些红点之一,如果,绕开那些红点之一,以便您采取那些红点之一,如果,你有点绕着红点圈了一下,你有点绕着红点圈了一下,您注意到的是特征的方向,您注意到的是特征的方向。
边缘提取器的种类随着您的移动而不断变化,边缘提取器的种类随着您的移动而不断变化,这些被称为风车模式,它们在,这些被称为风车模式,它们在,实际上在大脑中的那些图片,实际上在大脑中的那些图片。
来自描述这一点的神经科学论文,来自描述这一点的神经科学论文,颜色在这里编码方向设置活动,颜色在这里编码方向设置活动,小星星表示那些,[音乐]这里的奇点,[音乐]这里的奇点,风车的中心是训练过的。
风车的中心是训练过的,有一个很小的价值,这是一个正则化对吧,让我,有一个很小的价值,这是一个正则化对吧,让我,回到,嗯,这是训练或推论过程中的成本函数,嗯,这是训练或推论过程中的成本函数。
取决于您是否使用,取决于您是否使用,是否具有潜在变量的一种预测版本,是否具有潜在变量的一种预测版本,但嗯,但基本上只是一个,但嗯,但基本上只是一个,这基本上只是能源权的一个术语。
这基本上只是能源权的一个术语,所以这个词本身是未经训练的,它是固定的,所以这个词本身是未经训练的,它是固定的,对,这只是组上的l2范数,并且组是预先确定的,对,这只是组上的l2范数,并且组是预先确定的。
嗯,但是因为这是一个标准,所以它可以确定,嗯,但是因为这是一个标准,所以它可以确定,编码器和解码器将执行什么功能,编码器和解码器将执行什么功能,将在这里提取,是另一个示例,将在这里提取,是另一个示例。
您知道一种通过横向抑制进行稀疏编码的奇异方法,您知道一种通过横向抑制进行稀疏编码的奇异方法,人们提出了很多不同的方法来做到这一点,人们提出了很多不同的方法来做到这一点。
这个来自卡罗尔·格里高(Carol gregor)和施莱姆(schlem),这个来自卡罗尔·格里高(Carol gregor)和施莱姆(schlem),大约十年前在我的实验室里,所以这里有。
大约十年前在我的实验室里,所以这里有,再次是具有平方重构误差的线性解码器,这是wz减去,再次是具有平方重构误差的线性解码器,这是wz减去,x,在这种情况下,这里是x的输入,然后在,x,在这种情况下。
这里是x的输入,然后在,能量,它是由,能量,它是由,z转置的绝对值乘以某些矩阵乘以,z转置的绝对值乘以某些矩阵乘以,向量本身,所以它是一种二次形式,向量本身,所以它是一种二次形式。
涉及z和这个矩阵s和矩阵s的uh是,涉及z和这个矩阵s和矩阵s的uh是,手动确定或,学到的东西可以使这个术语最大化,学到的东西可以使这个术语最大化,好的,如果s中的术语,好的,如果s中的术语,是肯定的。
并且很大,如果一个特定术语,是肯定的,并且很大,如果一个特定术语,sij大意味着系统不希望zi和zj为,sij大意味着系统不希望zi和zj为,在同一时间好吧,它希望如果zi处于打开状态,在同一时间好吧。
它希望如果zi处于打开状态,且sij大,则它希望zj关闭,且sij大,则它希望zj关闭,反之亦然,所以这是一种相互抑制,反之亦然,所以这是一种相互抑制,人们用这种叫做横向抑制的东西。
人们用这种叫做横向抑制的东西,在神经科学中,基本上,您基本上知道所有特征向量,在神经科学中,基本上,您基本上知道所有特征向量,通过该矩阵s抑制其他特征向量,通过该矩阵s抑制其他特征向量。
您可以确定矩阵sa先验的结构,您可以确定矩阵sa先验的结构,因此您可以决定只有某些项为非零,您可以决定,因此您可以决定只有某些项为非零,您可以决定,一些术语,这些术语是固定的或可以训练的,一些术语。
这些术语是固定的或可以训练的,而您训练他们的方式实际上是最大限度地提高了嗯,这有点,而您训练他们的方式实际上是最大限度地提高了嗯,这有点,进行一点对抗训练后,您会尝试找到s的值,进行一点对抗训练后。
您会尝试找到s的值,你们知道,呃,如果,你们知道,呃,如果,你要在限制范围内,高于sij的某个值z,高于sij的某个值z,zi或zj之一将变为零,该术语将消失,zi或zj之一将变为零,该术语将消失。
所以系统将让您知道最大sijs直到呃,所以系统将让您知道最大sijs直到呃,它足够大,可以做z和zj之间的相互抑制,它足够大,可以做z和zj之间的相互抑制,而且它不会继续下去,因为它不需要。
而且它不会继续下去,因为它不需要,再一次,如果您以树的形式组织,那么这里,再一次,如果您以树的形式组织,那么这里,这些线代表s矩阵中的零项uh,这些线代表s矩阵中的零项uh,每当两个要素之间没有界线时。
每当两个要素之间没有界线时,s矩阵中有一个非零项,所以每个特征都抑制了所有,s矩阵中有一个非零项,所以每个特征都抑制了所有,除了树上或树下的那些功能以外的其他功能。
除了树上或树下的那些功能以外的其他功能,嗯,这有点像拉宝集团的稀疏性,有点像,嗯,这有点像拉宝集团的稀疏性,有点像,如果您想要虚假的奇偶校验而不是,如果您想要虚假的奇偶校验而不是,说出树枝中的特征。
说出树枝中的特征,需要通过最小化一起激活,需要通过最小化一起激活,你知道l2最小化这样的组的数量,你知道l2最小化这样的组的数量,在这里,你显然有一种抑制,在这里,你显然有一种抑制。
表示每个功能都会抑制所有其他功能,表示每个功能都会抑制所有其他功能,树的所有其他分支中的特征,树的所有其他分支中的特征,再次看到的是,您看到了,再次看到的是,您看到了。
系统正在以或多或少如此连续的方式组织功能,系统正在以或多或少如此连续的方式组织功能,嗯,以这种方式沿着树的树枝出现,嗯,以这种方式沿着树的树枝出现,对应于基本相同的功能,但,对应于基本相同的功能,但。
具有不同程度的选择性,具有不同程度的选择性,然后沿外围的特征或多或少连续地变化,然后沿外围的特征或多或少连续地变化,因为你不仅知道,因为你不仅知道,在底层但也在中间层,在底层但也在中间层,好吧,嗯。
回到训练系统的方式,好吧,嗯,回到训练系统的方式,在每次迭代中都给定一个x,您会找到使该值最小的z,在每次迭代中都给定一个x,您会找到使该值最小的z,能量函数,所以您找到可以重建但,能量函数。
所以您找到可以重建但,也最小化第二项,这意味着如果您有一个sij项,也最小化第二项,这意味着如果您有一个sij项,非零,它希望zi或zj为零或,非零,它希望zi或zj为零或,至少很小。
你现在在后裔上迈出一大步,至少很小,你现在在后裔上迈出一大步,至,h求助于uw的更新,以最大程度地减少构造错误,h求助于uw的更新,以最大程度地减少构造错误,如果您愿意,也可以进行一步的梯度上升以使。
如果您愿意,也可以进行一步的梯度上升以使,通过计算的梯度可以大一些,通过计算的梯度可以大一些,相对于s的能量,但随后上升的能量却不下降,相对于s的能量,但随后上升的能量却不下降。
再次,如果您使用的不是树,而是某种2D拓扑,再次,如果您使用的不是树,而是某种2D拓扑,也会得到那种模式,也会得到那种模式,如果要素具有多种比例,则更为复杂,如果要素具有多种比例,则更为复杂。
稀疏编码和结构空间编码就好了,稀疏编码和结构空间编码就好了,我告诉你的原因是,我告诉你的原因是,嗯,尽管这些没有大量的实际应用,嗯,尽管这些没有大量的实际应用,稀疏指令密码,在我看来,它们将成为。
在我看来,它们将成为,正如我告诉你的,未来几年的自我监督运行方法,正如我告诉你的,未来几年的自我监督运行方法,认为南方突然出现的惊喜是,认为南方突然出现的惊喜是,nlp中最热门的话题,它正在变得。
nlp中最热门的话题,它正在变得,也是计算机视觉中的一个热门话题,也是计算机视觉中的一个热门话题,现在主要由对比方法主导,但我认为呃,现在主要由对比方法主导,但我认为呃,建筑方法将接管,因为对比方法。
建筑方法将接管,因为对比方法,伸缩性不好,所以这有点像给你,伸缩性不好,所以这有点像给你,如果您想了解这是未来的武器,如果您想了解这是未来的武器,嗯,现在就完全可以了。
嗯,现在就完全可以了,不同,这是阿尔弗雷多想要的,因为他致力于。
不同,这是阿尔弗雷多想要的,因为他致力于,项目,它是用户之一,项目,它是用户之一,明星主管学习最重要的用户之一可能是,明星主管学习最重要的用户之一可能是,学习用于控制系统或其他目的的世界模型的想法。
学习用于控制系统或其他目的的世界模型的想法,所以当我们当人类或动物学习,所以当我们当人类或动物学习,任务,我们显然很擅长,任务,我们显然很擅长,世界如何运作的内部模型,世界如何运作的内部模型。
当物体不是物体时的物理现象,当物体不是物体时的物理现象,支持跌落,当我们,支持跌落,当我们,大概九个月大的婴儿大概八九个月,大概九个月大的婴儿大概八九个月,那是当它出现在婴儿um中时,我们主要了解到。
那是当它出现在婴儿um中时,我们主要了解到,观察,那么我们如何学习,观察,那么我们如何学习,世界如何运作以及有关世界的所有概念,世界如何运作以及有关世界的所有概念,通过观察,有两个,通过观察,有两个。
这项权利的原因,所以我已经解释过的是监督的想法,这项权利的原因,所以我已经解释过的是监督的想法,学习是否可以训练自己来预测也许,学习是否可以训练自己来预测也许,自发地学习关于世界的抽象概念。
自发地学习关于世界的抽象概念,在准备运行特定设备时可能会有用,在准备运行特定设备时可能会有用,一个或一组任务,但是还有另一个原因是,一个或一组任务,但是还有另一个原因是,您实际上想建立世界模型。
如果您希望能够采取行动,您实际上想建立世界模型,如果您希望能够采取行动,世界是正确的,所以我握着这支笔,世界是正确的,所以我握着这支笔,而且我知道如果我将手向上移动,笔将随之移动,因为。
而且我知道如果我将手向上移动,笔将随之移动,因为,你知道那是在我的手指间我知道,如果我,你知道那是在我的手指间我知道,如果我,张开手指,笔会掉下来,我会因重力而知道,张开手指,笔会掉下来。
我会因重力而知道,通过掌握,我知道了我学到的所有东西,并且我已经,通过掌握,我知道了我学到的所有东西,并且我已经,我主要是通过实验学到的关于观察的知识,我主要是通过实验学到的关于观察的知识。
但是我学到的很多东西都是通过观察学到的,所以这个大问题,但是我学到的很多东西都是通过观察学到的,所以这个大问题,是我们可以学习到吗?是我们可以学习到吗?自我监督学习训练系统学习世界模型。
自我监督学习训练系统学习世界模型。
嗯,好的模型是什么,所以如果您想,嗯,好的模型是什么,所以如果您想,给一个自治的体系结构的想法,给一个自治的体系结构的想法,情报系统,这将是一个基本上由四个部分组成的系统。
这将是一个基本上由四个部分组成的系统,这里的主要区块在左侧代表,这里的主要区块在左侧代表,这是一个聪明的代理人,也许不是那么聪明,我们将看到,这是一个聪明的代理人,也许不是那么聪明,我们将看到。
它有一个感知模块,感知模块基本上会观察,它有一个感知模块,感知模块基本上会观察,然后计算状态的表示形式,然后计算状态的表示形式,可以在时间t叫st的世界,可以在时间t叫st的世界,t的s是系统具有。
t的s是系统具有,这个世界一定是不完整的,这个世界一定是不完整的,表示世界,因为我们无法观察到整个宇宙,表示世界,因为我们无法观察到整个宇宙,一旦我们只观察立即,一旦我们只观察立即,在我们周围。
甚至我们无法通过遮挡看到,并且有一个,在我们周围,甚至我们无法通过遮挡看到,并且有一个,你们很多人都知道世界的内部状态,你们很多人都知道世界的内部状态,即使您可以观察到您的准确性,我们也无法充分观察到。
即使您可以观察到您的准确性,我们也无法充分观察到,观察可能还不够好,所以如果我把这支笔放在我的,观察可能还不够好,所以如果我把这支笔放在我的,在我手中,它似乎是垂直的,放开它,在我手中,它似乎是垂直的。
放开它,它会下降,但您无法真正预测我使用该方向的方向,它会下降,但您无法真正预测我使用该方向的方向,之前的例子来描述问题,之前的例子来描述问题,世界的不确定性是不确定的,你不能。
世界的不确定性是不确定的,你不能,准确预测将要发生的事情,因为您没有一个完美的阅读方法,准确预测将要发生的事情,因为您没有一个完美的阅读方法,世界的状态,也许世界本质上是,世界的状态,也许世界本质上是。
随机的,我们不知道实际上还可以,所以,随机的,我们不知道实际上还可以,所以,正向模型是给定当前状态的模型,正向模型是给定当前状态的模型,世界或您对当前状态的看法,世界或您对当前状态的看法。
世界以及您正在采取的行动或,世界以及您正在采取的行动或,别人正在服用您可以选择的产品或在,别人正在服用您可以选择的产品或在,最少观察,也许是辅助潜变量,最少观察,也许是辅助潜变量。
t的z代表您对这个世界所不了解的,t的z代表您对这个世界所不了解的,所以世界的一部分,所以世界的一部分,您不知道发生的事情或无法预测的事情,您不知道发生的事情或无法预测的事情,并在世界上继续前进。
并在世界上继续前进,预测世界的下一个状态st加一个离散化的好吧,预测世界的下一个状态st加一个离散化的好吧,以某种方式计时,因此,如果您具有该类型世界的模型,以某种方式计时,因此。
如果您具有该类型世界的模型,您可以在脑海中模拟由于您的情况会发生什么,您可以在脑海中模拟由于您的情况会发生什么,动作还可以,所以您有这个模型,动作还可以,所以您有这个模型,你的头,你知道现在的状态。
你的头,你知道现在的状态,世界是关于当前状态的一些想法,世界是关于当前状态的一些想法,你运行世界的内部模型的世界,你运行世界的内部模型的世界,带有a的t序列,这是您想象的动作序列,带有a的t序列。
这是您想象的动作序列,和你的世界模型一样,和你的世界模型一样,想象它会预测世界将会发生什么,想象它会预测世界将会发生什么,如果您可以这样做,那么您可以计划将要采取的一系列行动,如果您可以这样做。
那么您可以计划将要采取的一系列行动,在一个特定的目标还可以,例如,在一个特定的目标还可以,例如,我应该怎么做才能抓住这支笔,我应该怎么做才能抓住这支笔,嗯,你知道我该不该遵循特定的轨迹,嗯。
你知道我该不该遵循特定的轨迹,你知道以一种特殊的方式致动我的肌肉,所以我抓住了这支笔,你知道以一种特殊的方式致动我的肌肉,所以我抓住了这支笔,我可以衡量的成本函数的标准是,我可以衡量的成本函数的标准是。
是我是否已经握住笔好了吗?是我是否已经握住笔好了吗?我可以用一些功能来测量,我可以用一些功能来测量,问题是我可以计划给定我的模型的一系列操作,问题是我可以计划给定我的模型的一系列操作。
在这种情况下是我的模型的世界,在这种情况下是我的模型的世界,手和笔所在的位置的模型可以让我抓住它,手和笔所在的位置的模型可以让我抓住它,如果我丢了笔并且必须抓住它,那会有点复杂。
如果我丢了笔并且必须抓住它,那会有点复杂,空气还可以,因为我必须预测,空气还可以,因为我必须预测,笔的轨迹,所以我必须有一个直观的物理模型,笔的轨迹,所以我必须有一个直观的物理模型,能够抓住那支笔。
我当然是从经验中学到的,能够抓住那支笔,我当然是从经验中学到的,人们也很惊讶您如此喜欢,人们也很惊讶您如此喜欢,强化学习这不是强化,强化学习这不是强化,这与强化学习完全无关,这与强化学习完全无关。
非常清楚,这与强化学习无关,非常清楚,这与强化学习无关,嗯,将来可能需要这样做,但是现在不需要,嗯,将来可能需要这样做,但是现在不需要,um基于模型的强化学习否与它无关。
um基于模型的强化学习否与它无关,茶点跑步让我好吧让我经历,茶点跑步让我好吧让我经历,这可以解释一下区别吗,这可以解释一下区别吗,有人问嗯,好吧,所以现在,有人问嗯,好吧,所以现在,所以在左边。
你有这个小特工,它有这个世界的模型,所以在左边,你有这个小特工,它有这个世界的模型,你可以向前跑好吧,它可以有一个演员还是你,你可以向前跑好吧,它可以有一个演员还是你,可以将其视为产生一系列行动的政策。
可以将其视为产生一系列行动的政策,将提供给模型,然后添加评论者,将提供给模型,然后添加评论者,预测成本,预测成本,最终状态或轨迹将根据准则,最终状态或轨迹将根据准则,评论家在这里计算出基本上不履行。
评论家在这里计算出基本上不履行,我设定好的目标,如果我的任务是达成目标,我设定好的目标,如果我的任务是达成目标,跨度和我有点想念笔几厘米,跨度和我有点想念笔几厘米,我的成本是几厘米,如果我抓住它。
成本是零,我的成本是几厘米,如果我抓住它,成本是零,如果我很想念它,那么成本会更高,这就是成本的一个例子,如果我很想念它,那么成本会更高,这就是成本的一个例子,现在好了。
所以您可以做很多不同的事情,现在好了,所以您可以做很多不同的事情,与呃这种智能代理的基本模型,与呃这种智能代理的基本模型,第一个是你从一个初始状态开始,第一个是你从一个初始状态开始。
您在世界上观察到您运行的是前向模型,您在世界上观察到您运行的是前向模型,有关衡量成本的一系列操作的建议,有关衡量成本的一系列操作的建议,以及您在这里可以做什么而忽略了代表策略的p。
以及您在这里可以做什么而忽略了代表策略的p,嗯,让我们想象一下它不是通过梯度下降或某种形式存在的,嗯,让我们想象一下它不是通过梯度下降或某种形式存在的,优化算法,您可以尝试查找序列,优化算法。
您可以尝试查找序列,减少总成本的措施,减少总成本的措施,在轨迹上,我从状态开始,在轨迹上,我从状态开始,我运行我的前向模型,这需要采取措施,我运行我的前向模型,这需要采取措施,好吧,我就称这个为a1。
这是s1或s1,好吧,我就称这个为a1,这是s1或s1,这将给我s2,而我将衡量s2的成本,这将给我s2,而我将衡量s2的成本,通过一些成本函数,看到,好的,下一个步骤再次运行我的正向模型,好的。
下一个步骤再次运行我的正向模型,提出一个行动建议a2这都是模拟的,这全在我脑海中,提出一个行动建议a2这都是模拟的,这全在我脑海中,对,因为这个模型是正向模型,对,因为这个模型是正向模型。
在我的头上看到我的额叶皮层,所以我实际上并没有在,在我的头上看到我的额叶皮层,所以我实际上并没有在,世界,等等正确,所以我可以展开一些时间步骤,这些时间步骤可以是,等等正确,所以我可以展开一些时间步骤。
这些时间步骤可以是,毫秒(如果我控制肌肉),毫秒(如果我控制肌肉),如果我控制高级别的动作几秒钟,它们可能会好几个小时,所以如果我想,如果我控制高级别的动作几秒钟,它们可能会好几个小时,所以如果我想。
计划如何我不知道去旧金山你,计划如何我不知道去旧金山你,知道我需要去机场然后乘飞机,知道我需要去机场然后乘飞机,然后,当我到达那里时,乘坐出租车或,然后,当我到达那里时,乘坐出租车或,等等。
所以这是独立的,等等,所以这是独立的,事物的描述级别,事物的描述级别,好吧,我可以做的就是我可以做一个非常经典的,好吧,我可以做的就是我可以做一个非常经典的,称为模型预测控制的方法,因此它是经典的。
称为模型预测控制的方法,因此它是经典的,最佳控制是一门完整的学科,最佳控制是一门完整的学科,从50年代开始就存在,如果不是更早的话,从50年代开始就存在,如果不是更早的话。
而且其中一些方法是方法预测控制,可以追溯到,而且其中一些方法是方法预测控制,可以追溯到,1960年代,有一种叫做kelly bison算法的东西,1960年代。
有一种叫做kelly bison算法的东西,我觉得这很凯利,我不是,当然,所以这是,当然,所以这是,与我目前所描述的方法非常相似的方法,与我目前所描述的方法非常相似的方法。
美国国家航空航天局主要使用它来计算轨迹,美国国家航空航天局主要使用它来计算轨迹,对于火箭来说还可以,所以当他们在60年代开始拥有计算机时,对于火箭来说还可以,所以当他们在60年代开始拥有计算机时。
在美国国家航空航天局,他们开始使用计算机计算轨迹,在美国国家航空航天局,他们开始使用计算机计算轨迹,基本上是在使用这样的东西之前,他们不得不手工做,基本上是在使用这样的东西之前,他们不得不手工做,好吧。
如果你还没看过电影,好吧,如果你还没看过电影,隐藏的数字,我描述了人们如何,隐藏的数字,我描述了人们如何,手工竞争这主要是由于黑人妇女所做的,手工竞争这主要是由于黑人妇女所做的,美国黑人数学家。
美国黑人数学家,那些计算机观看那部电影的编程方式真的很棒,那些计算机观看那部电影的编程方式真的很棒,好吧,这是一个基本概念,嗯,看起来非常,好吧,这是一个基本概念,嗯,看起来非常,就像是经常性的网好吧。
因为您的福特车型是,就像是经常性的网好吧,因为您的福特车型是,基本上复制了相同的网络,基本上复制了相同的网络,随着时间的流逝,这就像是一个虚幻的循环网络,随着时间的流逝,这就像是一个虚幻的循环网络。
很好,您在这里所做的就是您向后传播,很好,您在这里所做的就是您向后传播,整个网络一直到的成本价值,整个网络一直到的成本价值,动作,并且您不会将其用于训练,而是将其用于推理,动作,并且您不会将其用于训练。
而是将其用于推理,可以将动作视为潜在变量,基本上,可以将动作视为潜在变量,基本上,梯度下降或其他优化方法,梯度下降或其他优化方法,您会发现一系列的操作,这些操作可以最大程度地减少,您会发现一系列的操作。
这些操作可以最大程度地减少,轨迹好了,轨迹好了,所以基本上您的总成本是,所以基本上您的总成本是,我将其称为大c,这将是总和或时间步长,我将其称为大c,这将是总和或时间步长,好的一点C的时间步长。
好的一点C的时间步长,呃,你要做的是一个大的a的序列,呃,你要做的是一个大的a的序列,将被其自身价值减去一些,将被其自身价值减去一些,步长乘以大c相对于的梯度,步长乘以大c相对于的梯度,好的。
只要您可以计算出这些费用总和的梯度,好的,只要您可以计算出这些费用总和的梯度,关于a的所有分量的轨迹,关于a的所有分量的轨迹,这意味着a的轨迹可以执行此优化操作,这意味着a的轨迹可以执行此优化操作。
必须为梯度下降而必须这样做,必须为梯度下降而必须这样做,在某些情况下,有更有效的方法可以进行优化,在某些情况下,有更有效的方法可以进行优化,um使用动态编程,例如,如果a是离散的,um使用动态编程。
例如,如果a是离散的,可能会更有效,但是如果a是连续的高维,可能会更有效,但是如果a是连续的高维,基本上别无选择,只能使用基于梯度的方法,基本上别无选择,只能使用基于梯度的方法,好吧,这就是推断。
这不是没有学习,什么是,好吧,这就是推断,这不是没有学习,什么是,大a是序列a1 a2 a3等,大a是序列a1 a2 a3等,好吧,所以你有一个不同的目标函数,好吧,所以你有一个不同的目标函数。
您可以根据自己感兴趣的变量将其最小化,您可以根据自己感兴趣的变量将其最小化,你从中得到什么,aa中没有权重,你从中得到什么,aa中没有权重,对,所以a是一个向量,是的,那是,对,所以a是一个向量,是的。
那是,实际上是因为我们从不使用呃,到目前为止我们从未最小化向量,实际上是因为我们从不使用呃,到目前为止我们从未最小化向量,一直在最小化,我们一直在优化权重,一直在最小化,我们一直在优化权重,人们是哦。
我们有像z这样的潜在变量,人们是哦,我们有像z这样的潜在变量,变量基于能量的模型的潜在变量,变量基于能量的模型的潜在变量,我们确实将关于z的能量最小化,所以这是相同的,我们确实将关于z的能量最小化。
所以这是相同的,这里的问题我们正在解决,我想是的,我想不是每个人,这里的问题我们正在解决,我想是的,我想不是每个人,了解潜在变量实际上是输入,了解潜在变量实际上是输入,所以我认为这也与。
所以我认为这也与,我们在广场上有关于训练这些的问题,我们在广场上有关于训练这些的问题,潜在变量模型是的,您不想使用该词,潜在变量模型是的,您不想使用该词,训练文字变量或类似的东西。
训练文字变量或类似的东西,因为呃,你想使用推断,好吧,你想使用这个词,因为呃,你想使用推断,好吧,你想使用这个词,推断或不训练我想使用,推断或不训练我想使用,推理一词不训练推理和推理之间有什么区别。
推理一词不训练推理和推理之间有什么区别,训练与训练你一起训练,训练与训练你一起训练,学习大量的参数呃,学习大量的参数呃,的样本可以推断出您的价值,的样本可以推断出您的价值。
一些变量是一个潜在变量a在这种情况下是z在一个潜在变量的情况下,一些变量是一个潜在变量a在这种情况下是z在一个潜在变量的情况下,特定于一个样本的基于可变能量的模型uh。
特定于一个样本的基于可变能量的模型uh,好吧,您更改样本的书面变量的变化,好吧,您更改样本的书面变量的变化,因此您不会学习它,因为您一次都不记得它了,因此您不会学习它,因为您一次都不记得它了。
一次到下一次,你知道没有记忆,一次到下一次,你知道没有记忆,为此,嗯,所以这就是您从概念上知道您在做相同种类的区别,所以这就是您从概念上知道您在做相同种类的区别,您进行学习和推理的过程。
您进行学习和推理的过程,所以在某种程度上,它们是相同的,所以在某种程度上,它们是相同的,但是推论您是按照每个样本来学习的,而是通过一堆,但是推论您是按照每个样本来学习的,而是通过一堆,样本。
并且您共享该参数,样本,并且您共享该参数,当我们有一个基于能量的模型时,这些样本,当我们有一个基于能量的模型时,这些样本,我们想做推断,我们仍然需要做一个最小化,我们想做推断,我们仍然需要做一个最小化。
每次执行此操作时,我们都会正确使用它,因此,每次执行此操作时,我们都会正确使用它,因此,训练模型后,您之后的差异,训练模型后,您之后的差异,使用它,您仍然需要对潜伏进行最小化,使用它。
您仍然需要对潜伏进行最小化,变量好吧,那是最大的不同,变量好吧,那是最大的不同,在这里,这里可能有也可能没有,在这里,这里可能有也可能没有,训练您的前向模型可能是手工建立的,也可能是经过训练的,但是。
训练您的前向模型可能是手工建立的,也可能是经过训练的,但是,到我们在这里的时候,它已经训练了,我们在这里没有训练任何东西,到我们在这里的时候,它已经训练了,我们在这里没有训练任何东西。
我们只是在进行推断我们正在找出最佳值,我们只是在进行推断我们正在找出最佳值,的顺序是我们将最小化,的顺序是我们将最小化,成本总成本,这是一个推断问题,成本总成本,这是一个推断问题,就像基于能量的模型。
例如fm,就像基于能量的模型,例如fm,四个模型可以只是物理方程的一条线,可以,四个模型可以只是物理方程的一条线,可以,一个确定性方程,所以可以想象正向模型是少数,一个确定性方程。
所以可以想象正向模型是少数,描述火箭物理的方程,描述火箭物理的方程,从根本上说,a是转向的作用,您知道如何定向,从根本上说,a是转向的作用,您知道如何定向,喷嘴,然后推力。
所以这将是一个的集合将是那些的集合,所以这将是一个的集合将是那些的集合,变量,然后有一个非常简单的物理牛顿物理,变量,然后有一个非常简单的物理牛顿物理,基本上,你可以写方程式,基本上,你可以写方程式。
在下一个uh时间步给您球拍的状态,作为,在下一个uh时间步给您球拍的状态,作为,上一个时间步的电弧状态功能和您要执行的操作,上一个时间步的电弧状态功能和您要执行的操作,这就是您进行仿真的方式。
这就是每个模拟器的工作方式,这就是您进行仿真的方式,这就是每个模拟器的工作方式,然后如果要发射火箭,您的成本函数将是,然后如果要发射火箭,您的成本函数将是,也许是两件事的结合,呃会是。
也许是两件事的结合,呃会是,在该时间步中花费的能量,在该时间步中花费的能量,好吧,你花了这样的燃料量,好吧,你花了这样的燃料量,第二项可能是您想要达到的目标的距离,第二项可能是您想要达到的目标的距离。
也许你想和一个空间站会合,也许你想和一个空间站会合,费用中的第二项是到空间站的距离,费用中的第二项是到空间站的距离,到太空站的距离还可以吗,到太空站的距离还可以吗。
如果您测量um到距离的整个轨迹上的总和,如果您测量um到距离的整个轨迹上的总和,空间站,系统将尽量减少时间,空间站,系统将尽量减少时间,到达空间站是需要的,因为他们要尽量减少,到达空间站是需要的。
因为他们要尽量减少,轨迹上到空间站的距离的平方和,轨迹上到空间站的距离的平方和,但同时它希望最大限度地减少燃料,因此您必须平衡,但同时它希望最大限度地减少燃料,因此您必须平衡,这两个词对。
所以这是一种经典的方式,这两个词对,所以这是一种经典的方式,进行最优控制的方法,即模型预测控制,进行最优控制的方法,即模型预测控制,模型是卡尔曼滤波模型预测控制的一种。
模型是卡尔曼滤波模型预测控制的一种,如果您希望采用某种方式,则没有相机过滤是特定的超前转发模型,如果您希望采用某种方式,则没有相机过滤是特定的超前转发模型,估计世界状况还可以,但是嗯。
估计世界状况还可以,但是嗯,基本上是因为您对世界状况有了观察,基本上是因为您对世界状况有了观察,通过感知系统,关于,通过感知系统,关于,世界状况和命令过滤器基本上假定,世界状况和命令过滤器基本上假定。
关于这种不确定性的高斯分布,关于这种不确定性的高斯分布,现在,当您遍历前向模型时,现在,当您遍历前向模型时,您将会对世界状况产生不确定性,您将会对世界状况产生不确定性,在下一个时间步,因为不确定是否以。
在下一个时间步,因为不确定是否以,好吧,鉴于您从何处开始时的不确定性,好吧,鉴于您从何处开始时的不确定性,如果需要,经过物理步骤后不确定性是多少,如果需要,经过物理步骤后不确定性是多少。
如果您假设所有这些步骤都是线性的,如果您假设所有这些步骤都是线性的,和不确定性的高斯性,和不确定性的高斯性,常用的滤波器是um,大多数不确定性来自,常用的滤波器是um,大多数不确定性来自,现在。
您的前向模型会产生一个预测,然后下一步,现在,您的前向模型会产生一个预测,然后下一步,您可能会再次了解世界状况,您可能会再次了解世界状况,因为您的传感器仍在工作,所以现在您有两个高斯,一个是。
因为您的传感器仍在工作,所以现在您有两个高斯,一个是,你对世界的新认识告诉你这是我的想法,你对世界的新认识告诉你这是我的想法,世界的状况是,您的福特模型也在这里预测,这就是为什么我认为,世界的状况是。
您的福特模型也在这里预测,这就是为什么我认为,我认为它在哪里,而您必须将这两个结合起来,我认为它在哪里,而您必须将这两个结合起来,普通过滤复杂的地方,普通过滤复杂的地方,嗯,我有两个高斯预测,嗯。
我有两个高斯预测,因此,如果您将结果概率分布也设为高斯,因此,如果您将结果概率分布也设为高斯,计算协方差矩阵和等等,这就是,计算协方差矩阵和等等,这就是,um常用过滤器的公式来自。
um常用过滤器的公式来自,好的,所以游戏过滤器是应对不确定性的一种方法,好的,所以游戏过滤器是应对不确定性的一种方法,在阅读中您对世界的看法,在阅读中您对世界的看法,而在呃。
当您在正向模型中传播这种不确定性时,当您在正向模型中传播这种不确定性时,嗯,我认为仍然有一个主要区别,我想你想解决,嗯,我认为仍然有一个主要区别,我想你想解决,这与已经可以的不同,这与已经可以的不同。
所以在这种情况下rl是什么,所以好吧,我需要我需要我需要一个,所以在这种情况下rl是什么,所以好吧,我需要我需要我需要一个,在我谈论rl之前还有更多步骤,这是该步骤,在我谈论rl之前还有更多步骤。
这是该步骤,好吧,一分钟前我们所拥有的是一个前向模型,好吧,一分钟前我们所拥有的是一个前向模型,及时报名,并且系统有,采取一系列动作a1 a2 a3,采取一系列动作a1 a2 a3。
s1 s2然后这里有成本函数,s1 s2然后这里有成本函数,接下来,好的,这现在可以继续进行,我们希望能够做到,好的,这现在可以继续进行,我们希望能够做到,不必针对a1 a2 a3 a4进行此优化。
不必针对a1 a2 a3 a4进行此优化,呃每次我们都需要做计划时,我们都不需要,呃每次我们都需要做计划时,我们都不需要,要做这个反向传播的复杂过程,要做这个反向传播的复杂过程。
通过整个系统的梯度来进行模型预测,通过整个系统的梯度来进行模型预测,呃控制,以及摆脱的简单方法,呃控制,以及摆脱的简单方法,该步骤与我们在汽车中使用的技巧相同,该步骤与我们在汽车中使用的技巧相同。
编码器与密码转换,所以请记住它是密码转换,编码器与密码转换,所以请记住它是密码转换,我们想重建,但随后我们不得不对,我们想重建,但随后我们不得不对,通过优化的潜在变量,事实证明是,通过优化的潜在变量。
事实证明是,昂贵,所以我们上周讨论的是使用编码器的想法,昂贵,所以我们上周讨论的是使用编码器的想法,我们训练直接预测最佳值,我们训练直接预测最佳值,好的,我们将在此处进行相同的操作,使该想法成为,好的。
我们将在此处进行相同的操作,使该想法成为,编码器,我们将在这里做同样的事情,我将训练网络来,编码器,我们将在这里做同样的事情,我将训练网络来,陈述并直接预测最佳,陈述并直接预测最佳,行动的价值是。
我们当然要走这个网络,行动的价值是,我们当然要走这个网络,应用于每个步骤,这将被称为政策,应用于每个步骤,这将被称为政策,网络,好的,因此政策网络将状态,好的,因此政策网络将状态,并猜测最佳动作。
并猜测最佳动作,此时应采取的措施,以将总成本降至最低,此时应采取的措施,以将总成本降至最低,好的,这将是一个可训练的神经网络,好的,这将是一个可训练的神经网络,或我们想要的任何模型参数化模型。
或我们想要的任何模型参数化模型,训练该模型基本上只是反向传播,训练该模型基本上只是反向传播,好的,所以我们要使用感知模块,这就是,好的,所以我们要使用感知模块,这就是,这是这里的世界。
我们正在用相机看世界,这是这里的世界,我们正在用相机看世界,还有一个感知模块,可以让我们猜测,还有一个感知模块,可以让我们猜测,世界还好,这是感知,世界还好,这是感知。
这是一个应用了多个时间步长的正向模型,这是一个应用了多个时间步长的正向模型,这都是成本,好的,所以我们可以做的就是运行系统,好的,所以我们可以做的就是运行系统,首先运行系统,通过感知。
我们计算出一个动作,然后通过,通过感知,我们计算出一个动作,然后通过,正向模型这个正向模型给我们,正向模型这个正向模型给我们,这是我们要计算成本的下一个状态,这是我们要计算成本的下一个状态。
然后继续前进,继续前进,直到整个弹出,然后继续前进,继续前进,直到整个弹出,系统真的是一种展开,系统真的是一种展开,经常性净额(如果需要),一旦完成,经常性净额(如果需要),一旦完成。
您返回了成本中所有项的梯度梯度,您返回了成本中所有项的梯度梯度,通过网络一直运行,通过网络一直运行,通过该策略网络的参数的方式,通过该策略网络的参数的方式,好吧,基本上您可以计算出大c的d。
所以大c记住是,好吧,基本上您可以计算出大c的d,所以大c记住是,关于dw的所有c的很长时间,关于dw的所有c的很长时间,好,那只是一个时间的总和,好,那只是一个时间的总和,dw上的大c的。
dw上的大c的,抱歉,对了,大c在d atdat,抱歉,对了,大c在d atdat,还是dw好吧,我刚刚应用了链式规则,但是,还是dw好吧,我刚刚应用了链式规则,但是,我不需要正确。
如果我只是您知道在python中定义此函数而只是,我不需要正确,如果我只是您知道在python中定义此函数而只是,向后做它只会做正确的事情,所以,向后做它只会做正确的事情,所以。
我可以计算总体成本相对于,我可以计算总体成本相对于,该政策网络的参数,因此,如果我在足够多的条件下进行培训,该政策网络的参数,因此,如果我在足够多的条件下进行培训,呃。
如果我的成本函数执行了我的正向模型,则样本是否正确,呃,如果我的成本函数执行了我的正向模型,则样本是否正确,想要然后我的政策网络将学习,想要然后我的政策网络将学习,一个很好的政策,只看国家就可以减少。
一个很好的政策,只看国家就可以减少,轨迹上的预期成本好的轨迹上的平均成本,轨迹上的预期成本好的轨迹上的平均成本,这里没有援军,这都是背景,这里没有援军,这都是背景。
好吧,现在我们可以讨论一下茶点跑步的不同之处,好吧,现在我们可以讨论一下茶点跑步的不同之处,与此处运行的钢筋的主要区别,与此处运行的钢筋的主要区别,是呃是双重的第一个是在强化学习中。
是呃是双重的第一个是在强化学习中,至少在大多数强化训练场景中,至少在大多数强化训练场景中,c函数是一个黑匣子,它是一个,c函数是一个黑匣子,它是一个,黑匣子不是红匣子,好的,这是第一个区别。
第二个区别是,这不是,好的,这是第一个区别,第二个区别是,这不是,世界的前向模型,这是现实世界,世界的前向模型,这是现实世界,并且您对世界状况的度量是不完善的,因此,并且您对世界状况的度量是不完善的。
因此,在此政策网络内部,您可能在此处拥有感知网络,在此政策网络内部,您可能在此处拥有感知网络,可以估算世界状况,因此您无法控制,可以估算世界状况,因此您无法控制,现实世界和您的成本函数未知,您可以得到。
现实世界和您的成本函数未知,您可以得到,尝试一下就可以得出成本函数的输出,尝试一下就可以得出成本函数的输出,正确地采取行动,就会看到对世界的影响,正确地采取行动,就会看到对世界的影响,这给了你呃。
奔跑的人称之为奖励,但这是,这给了你呃,奔跑的人称之为奖励,但这是,只是负成本就可以了,只是负成本就可以了,您的成本,但成本无与伦比,您的成本,但成本无与伦比,不知道你要花费的费用的功能。
不知道你要花费的费用的功能,找出成本的价值还可以,嗯,那就是强化运行的主要问题,嗯,那就是强化运行的主要问题,成本函数是不可微的,成本函数是不可微的,嗯,唯一未知的估计方法是,嗯,唯一未知的估计方法是。
尝试一些东西,然后观察价值,这就是回报,尝试一些东西,然后观察价值,这就是回报,真的是负面的奖励的负面本质上是您的费用,真的是负面的奖励的负面本质上是您的费用,好的,在这种情况下,因为您无法评估渐变。
好的,在这种情况下,因为您无法评估渐变,为了最大程度地降低成本,您必须尝试多种操作,为了最大程度地降低成本,您必须尝试多种操作,尝试执行操作以查看结果,然后尝试执行另一操作以查看结果是否为。
尝试执行操作以查看结果,然后尝试执行另一操作以查看结果是否为,更好,然后尝试其他操作,看看是否,更好,然后尝试其他操作,看看是否,结果更好,如果您的成本函数非常平稳,结果更好,如果您的成本函数非常平稳。
在获得非零奖励之前,必须尝试许多事情,在获得非零奖励之前,必须尝试许多事情,或者您知道成本不高,那就是,或者您知道成本不高,那就是,复杂性还有另外一个问题,复杂性还有另外一个问题,探索,所以你认识你。
因为你不知道,探索,所以你认识你,因为你不知道,成本的形式,因为它是不可微的,成本的形式,因为它是不可微的,呃,您可能需要以一种明智的方式尝试多种操作,呃,您可能需要以一种明智的方式尝试多种操作。
找出要去的空间的哪一部分,找出要去的空间的哪一部分,我怎样才能改善我的表现,所以这是主要的问题,我怎样才能改善我的表现,所以这是主要的问题,呃,探索,然后是一个问题,呃,探索,然后是一个问题。
勘探与剥削,所以事实,勘探与剥削,所以事实,嗯,当你处在某种情况下,你不想完全随机,嗯,当你处在某种情况下,你不想完全随机,动作,因为它们可能不会导致任何有趣的事情,因此您,动作。
因为它们可能不会导致任何有趣的事情,因此您,想要采取接近,想要采取接近,您认为可能有效的方法,您认为可能有效的方法,在学习时偶尔尝试其他,在学习时偶尔尝试其他,并随着我的描述学习您的政策。
并随着我的描述学习您的政策,我刚才描述的是一种情况,我刚才描述的是一种情况,您可以在脑海中做所有这一切,因为您拥有世界的典范,您可以在脑海中做所有这一切,因为您拥有世界的典范。
您可以非常有效地优化操作顺序,您可以非常有效地优化操作顺序,因为您具有可微分的成本函数,所以将计算成本函数,因为您具有可微分的成本函数,所以将计算成本函数,如果您想进入自己的大脑。
如果您想进入自己的大脑,您的经纪人可以告诉您是否抓住了,您的经纪人可以告诉您是否抓住了,用笔你可以分辨出你之间的距离,用笔你可以分辨出你之间的距离,手和笔,以便您可以计算自己的成本函数,这有点,手和笔。
以便您可以计算自己的成本函数,这有点,在您的内部世界模型中,在现实世界中与众不同,在您的内部世界模型中,在现实世界中与众不同,不是在现实世界中,你不知道,不是在现实世界中,你不知道,除非您有以下模型。
否则您的手到笔的距离的导数,除非您有以下模型,否则您的手到笔的距离的导数,在您的脑海中,但默认情况下您不会,因为,在您的脑海中,但默认情况下您不会,因为,一切都在您的脑海一切都与众不同。
一切都在您的脑海一切都与众不同,由神经网络实现,您可以将所有内容正确地渐变为,由神经网络实现,您可以将所有内容正确地渐变为,一切,这就是这种最大的优势,一切,这就是这种最大的优势,方法与加固计划。
方法与加固计划,好吧,一切都变得与众不同,所以这个世界有两个问题,好吧,一切都变得与众不同,所以这个世界有两个问题,所以在这种情况下有一个很大的优势,所以在这种情况下有一个很大的优势,嗯。
这是因为您的前向模型可以比实时运行更快,嗯,这是因为您的前向模型可以比实时运行更快,您的代理内部可以按照您希望的速度运行,而无需,您的代理内部可以按照您希望的速度运行,而无需,跑遍世界好吧。
这是一个优势,第二个优势是,跑遍世界好吧,这是一个优势,第二个优势是,您所采取的行动不会杀死您,您所采取的行动不会杀死您,因为您可以使用正向模型预测呃,因为您可以使用正向模型预测呃。
你知道也许你会预言该行动会杀死你,但你不会,你知道也许你会预言该行动会杀死你,但你不会,将其带入现实世界,这样一来,如果您拥有,将其带入现实世界,这样一来,如果您拥有,准确的前向模型,第三个优势。
因为一切都发生在您的脑海中,第三个优势,因为一切都发生在您的脑海中,一切都是互联网,一切都是与众不同的,您可以使用各种,一切都是互联网,一切都是与众不同的,您可以使用各种,高效的学习或,高效的学习或。
推理算法来找出良好的行动方案,推理算法来找出良好的行动方案,好吧,这与加强训练中的茶点有所不同,好吧,这与加强训练中的茶点有所不同,运行你告诉自己我必须走,运行你告诉自己我必须走,在现实世界中。
我没有真实的模型,在现实世界中,我没有真实的模型,世界,我不知道如何计算成本,世界,我不知道如何计算成本,功能以一种不同的方式表示了很多强化,功能以一种不同的方式表示了很多强化。
学习方法通过训练模型来实际起作用,学习方法通过训练模型来实际起作用,成本函数好,所以演员评论家方法基本上,成本函数好,所以演员评论家方法基本上,评论家的角色是学会评估以预测价值。
评论家的角色是学会评估以预测价值,总体目标函数的预期,总体目标函数的预期,函数的值,因为它是一个神经网络,函数的值,因为它是一个神经网络,你将要训练的你可以向后传播梯度到它,所以你。
你将要训练的你可以向后传播梯度到它,所以你,基本上学习成本的近似值,基本上学习成本的近似值,使用神经系统的真实世界的真实世界的功能,使用神经系统的真实世界的真实世界的功能,网络就是批评家的角色,好吧。
为什么拥有模型这么好,网络就是批评家的角色,好吧,为什么拥有模型这么好,当你学习一个,例如学习驾驶等技能,基本上就是您可以学习的东西,例如学习驾驶等技能,基本上就是您可以学习的东西,快速学习。
而不会自杀,快速学习,而不会自杀,因此,如果您没有一个好的世界模型,就不会了解重力,因此,如果您没有一个好的世界模型,就不会了解重力,不知道物体的动力学,你什么都不知道,然后放,不知道物体的动力学。
你什么都不知道,然后放,汽车车轮处的代理商,汽车车轮处的代理商,不知道汽车的物理特性还可以,然后将汽车放在旁边,不知道汽车的物理特性还可以,然后将汽车放在旁边,悬崖,汽车在30英里处行驶,悬崖。
汽车在30英里处行驶,悬崖旁的一个小时探员,悬崖旁的一个小时探员,没有这个世界的模型,根本不知道将车轮转向,没有这个世界的模型,根本不知道将车轮转向,正确,汽车将从悬崖上驶出,正确,汽车将从悬崖上驶出。
掉进山沟里,它必须实际尝试以解决它,掉进山沟里,它必须实际尝试以解决它,它必须落入山沟中才能弄清楚这是一个坏主意,它必须落入山沟中才能弄清楚这是一个坏主意,好吧,也许只是从一个样本中就无法学习它,所以。
好吧,也许只是从一个样本中就无法学习它,所以,必须要像山沟一样跑进山沟数千次,必须要像山沟一样跑进山沟数千次,弄清楚首先的世界模型,弄清楚首先的世界模型,向右转动方向盘可使汽车向右行驶。
向右转动方向盘可使汽车向右行驶,其次,当汽车经过乌鸦上方时,它会落入峡谷中,其次,当汽车经过乌鸦上方时,它会落入峡谷中,如果您拥有世界模型,则可以自我毁灭,如果您拥有世界模型,则可以自我毁灭。
了解重力和类似的东西,了解重力和类似的东西,那么您知道向右转动方向盘将使,那么您知道向右转动方向盘将使,山沟,你不这样做,因为你知道,山沟,你不这样做,因为你知道,它会杀死你的,所以它允许人类和动物。
它会杀死你的,所以它允许人类和动物,快速学习比任何人都快得多,快速学习比任何人都快得多,曾经设计的无模型的钢筋运行方法,曾经设计的无模型的钢筋运行方法,事实是我们有非常好的单词模型。
事实是我们有非常好的单词模型,在我们的脑袋里,现在,这告诉我们什么了,所以这是问题所在,现在,这告诉我们什么了,所以这是问题所在,与世界世界是不确定的或,与世界世界是不确定的或,如果是确定性的。
那么复杂,如果是确定性的,那么复杂,同样好,这可能是不确定的,不会产生任何影响,同样好,这可能是不确定的,不会产生任何影响,对我们来说,这有两个问题,对我们来说,这有两个问题。
预测世界的下一个状态第一个问题是,预测世界的下一个状态第一个问题是,这个世界不是完全可预测的,也可能不是完全可预测的,这个世界不是完全可预测的,也可能不是完全可预测的,可预测的有两个原因。
可预测的有两个原因,选举不确定性和认知不确定性听觉不确定性,选举不确定性和认知不确定性听觉不确定性,是由于世界本质上是不可预测的,是由于世界本质上是不可预测的,或者我们没有关于世界状况的完整信息。
或者我们没有关于世界状况的完整信息,所以我们无法准确预测接下来会发生什么,所以我们无法准确预测接下来会发生什么,所以你现在在看着我,你是一个很好的即时模型,所以你现在在看着我,你是一个很好的即时模型。
我的环境还可以,但是你不能完全,我的环境还可以,但是你不能完全,预测接下来我将以哪种方式移动我的头,预测接下来我将以哪种方式移动我的头,因为你没有我头骨内部的准确模型,因为你没有我头骨内部的准确模型。
好吧,您的感知系统无法为您提供完整的模型,好吧,您的感知系统无法为您提供完整的模型,不幸的是我的大脑如何运作,因此,您无法准确预测我在做什么,您知道我下一步将要做什么,因此,您无法准确预测我在做什么。
您知道我下一步将要做什么,我要说的是我要动头,我要说的是我要动头,等等等,这也是不确定的,等等等,这也是不确定的,认知不确定性是,认知不确定性是,您无法完全预测下一个事实,您无法完全预测下一个事实,嗯。
因为您拥有的训练数据量很大,嗯,因为您拥有的训练数据量很大,还不够,您的模型还没有经过足够的训练,可以进行真正的,还不够,您的模型还没有经过足够的训练,可以进行真正的,弄清楚,好吧。
这是一种不同的呃类型,弄清楚,好吧,这是一种不同的呃类型,不确定性,所以现在最大的问题是,不确定性,所以现在最大的问题是,尽管我们如何确定性地训练世界模型,尽管我们如何确定性地训练世界模型。
一个st可以预测st加一,这是我们遇到的相同问题,一个st可以预测st加一,这是我们遇到的相同问题,在我们开始监督之前,我给您x可以预测原因,在我们开始监督之前,我给您x可以预测原因。
但问题是现在有多个与x兼容的y,但问题是现在有多个与x兼容的y,即使给定,多个st加号也与s兼容,即使给定,多个st加号也与s兼容,行动,所以这意味着我们这里的模型或,所以这意味着我们这里的模型或。
前向模型,可能将国家带到世界,并采取行动,可能将国家带到世界,并采取行动,但它也必须,一个我们不知道预测下一个状态的值的小变量,一个我们不知道预测下一个状态的值的小变量,好吧。
这看起来很像我们之前所说的,好吧,这看起来很像我们之前所说的,我们要在不同的拓扑中绘制此图形,但它是相同的,我们要在不同的拓扑中绘制此图形,但它是相同的,想法,所以我们有x,它正在经历,想法。
所以我们有x,它正在经历,计算h的预测变量,然后,计算h的预测变量,然后,通过,一个将潜在变量考虑在内的解码器,一个将潜在变量考虑在内的解码器,预测,y-bar然后我们观察y,好的,这是对s的预测。
也许,好的,这是对s的预测,也许,在某些时候,我们也许可以实际采取行动并观察,在某些时候,我们也许可以实际采取行动并观察,训练模型时的下一个世界状态,训练模型时的下一个世界状态。
我们实际上将观察世界的下一个状态,我们实际上将观察世界的下一个状态,t加一,好吧,我们在这里训练一个向前的模型,好吧,我们在这里训练一个向前的模型,我们采取行动的状态,我们采取行动的状态,嗯。
我们有一个潜在变量,我们的预测进入了成本函数,嗯,我们有一个潜在变量,我们的预测进入了成本函数,该图与右侧的图完全相同,该图与右侧的图完全相同,对,是一样的,是完全一样的图,对,是一样的。
是完全一样的图,除了我将FM分为两个模块,好了,我得到了,除了我将FM分为两个模块,好了,我得到了,给它一个特定的架构,实际上我可以做到这一点,给它一个特定的架构,实际上我可以做到这一点,更加明确。
我认为您选择了超厚标记笔,我认为您选择了超厚标记笔,是的,你不喜欢那个,所以这将是我的前向模型,所以这就是这个盒子里面的东西,所以这将是我的前向模型,所以这就是这个盒子里面的东西,呃。
在福特模型箱里面是这个,呃,在福特模型箱里面是这个,而且你知道我改名了,st现在称为x和sc加一个不称为y bar,st现在称为x和sc加一个不称为y bar,但我的意思是这不是为了y。
但是这是同一件事,否则是正确的,因此,但我的意思是这不是为了y,但是这是同一件事,否则是正确的,因此,我们之前讨论过的相同场景,我们之前讨论过的相同场景,在后期和基于可变能量的模型中。
在后期和基于可变能量的模型中,但是现在我们将使用它来训练一个正向模型来预测,但是现在我们将使用它来训练一个正向模型来预测,世界将会发生什么,所以,嗯,我们可能不得不玩与我们玩过的相同的把戏,嗯。
我们可能不得不玩与我们玩过的相同的把戏,嗯,我们上周谈论的是那个,嗯,我们上周谈论的是那个,上周我们解释的是,我们可以拿,好吧,上周我画的方式略有不同,好吧,上周我画的方式略有不同,嗯,上周的解释是。
我们可以,嗯,上周的解释是,我们可以,如果我们在训练正向模型时有x和y对,如果我们在训练正向模型时有x和y对,我们找到z值的方法是通过最小化z的能量,我们找到z值的方法是通过最小化z的能量,对。
所以我们基本上找到z,对,所以我们基本上找到z,星形,它是y和c的自变量,星形,它是y和c的自变量,y-bar y-bar是我们的预测变量的输出,y-bar y-bar是我们的预测变量的输出。
我们系统的,好吧,然后我们进行梯度下降的一步,所以我们,好吧,然后我们进行梯度下降的一步,所以我们,改变我们整个系统的参数,改变我们整个系统的参数,根据费用的梯度,但要使其正常工作,我们必须。
根据费用的梯度,但要使其正常工作,我们必须,规范限制其信息内容,规范限制其信息内容,我们必须在这里做同样的事情,为什么在这里这么好,我们正在尝试解决一个预测,为什么在这里这么好。
我们正在尝试解决一个预测,问题,但想像一下,我们谈到了一个,问题,但想像一下,我们谈到了一个,几个星期前,我给你x和ay,你会发现,几个星期前,我给你x和ay,你会发现,使总能量最小的z并且z不规则。
使总能量最小的z并且z不规则,如果z与y的维数相同,则可能是,如果z与y的维数相同,则可能是,使得成本函数为零的任何y的az,使得成本函数为零的任何y的az,对,如果z中有足够的容量,那么总会有,对。
如果z中有足够的容量,那么总会有,z的值使成本函数为零,z的值使成本函数为零,这很糟糕,因为这意味着我的能量函数将是,这很糟糕,因为这意味着我的能量函数将是,完全平坦,到处都是零,完全平坦,到处都是零。
需要它在训练样本上要小,需要它在训练样本上要小,在高数据密度区域之外,在高数据密度区域之外,我们在过去几周内看到的是通过对z进行正则化,我们在过去几周内看到的是通过对z进行正则化,通过闹剧或。
通过闹剧或,它是离散的还是,使其嘈杂,然后我们可以限制此容量,使其嘈杂,然后我们可以限制此容量,如果您已经有80口井,为什么我们需要zt,所以80是您采取的正确操作,如果您已经有80口井。
为什么我们需要zt,所以80是您采取的正确操作,嗯,好的,我要告诉你我要去,嗯,好的,我要告诉你我要去,让这支笔行得通,但是你不知道哪个方向,让这支笔行得通,但是你不知道哪个方向,它要正确。
所以我们可以说,它要正确,所以我们可以说,这样走,但我必须提前预测,这样走,但我必须提前预测,这样会好起来的,这是一个更好的情况,这样会好起来的,这是一个更好的情况,嗯,呃,你是踢足球的守门员。
那是点球,所以你,呃,你是踢足球的守门员,那是点球,所以你,在你面前,你知道在你面前的踢脚,在你面前,你知道在你面前的踢脚,这个家伙要踢球,你将不得不跳一种方式,这个家伙要踢球,你将不得不跳一种方式。
还是其他,您必须做出选择,我是向左还是向右跳跃,还是其他,您必须做出选择,我是向左还是向右跳跃,并且您必须根据您从该人那里观察到的内容做出决定,但是,并且您必须根据您从该人那里观察到的内容做出决定。
但是,你不知道球到底要做什么,你不知道球到底要做什么,你跳进去的方向,我的意思是,这基本上就是你跳进去的方式,你跳进去的方向,我的意思是,这基本上就是你跳进去的方式,就是你不知道玩家在做什么。
就是你不知道玩家在做什么,好吧,你不知道世界的状态,你不知道世界的状态,好吧,你不知道世界的状态,你不知道世界的状态,这个人的大脑,所以你不知道他是否会,这个人的大脑,所以你不知道他是否会。
向左或向右或向上或向下射击好吧,这是正确的区别,向左或向右或向上或向下射击好吧,这是正确的区别,z是您不了解的世界,z是您不了解的世界,使预测成为下一个状态所必需的是您采取的行动。
使预测成为下一个状态所必需的是您采取的行动,在这种情况下,对状态的即时状态影响很小,在这种情况下,对状态的即时状态影响很小,是的,现在看来似乎很清楚,是的,现在看来似乎很清楚,对。
所以您需要先对z进行正则化,对,所以您需要先对z进行正则化,我们描述的一些技巧,我们描述的一些技巧,所以我们描述要正则化的一件事是被动性,所以我们描述要正则化的一件事是被动性,另一个正在增加噪音,嗯。
但我们描述的另一个技巧是,嗯,但我们描述的另一个技巧是,正确使用编码器的想法,因此您拥有x或st,正确使用编码器的想法,因此您拥有x或st,通过预测变量运行预测变量,通过预测变量运行预测变量。
做出预测的解码器,做出预测的解码器,y我们称之为y bar,您比较糟糕,y我们称之为y bar,您比较糟糕,您将y栏与y进行比较,这里有z和我们所说的,这里有z和我们所说的,是在这里使用编码器的想法。
来预测z的最优值,然后基本上产生成本,来预测z的最优值,然后基本上产生成本,确定能量的功能,确定能量的功能,您实际使用的z值与,您实际使用的z值与,编码器预测的z值,也许在某些情况下将其正规化。
编码器预测的z值,也许在某些情况下将其正规化,方式,而且预测变量也必须影响编码器,而且预测变量也必须影响编码器,所以很明显你需要一个信息,所以很明显你需要一个信息,编码器和解码器之间的瓶颈。
否则系统会作弊,编码器和解码器之间的瓶颈,否则系统会作弊,它会完全忽略x,您将能够预测为什么,它会完全忽略x,您将能够预测为什么,只看y的值作弊,只看y的值作弊,通过编码器运行它,然后通过解码器运行它。
然后,通过编码器运行它,然后通过解码器运行它,然后,预测为什么正确,那只是一个非常简单的编码器,所以除非您,预测为什么正确,那只是一个非常简单的编码器,所以除非您,限制z的容量系统只会作弊而不是作弊。
限制z的容量系统只会作弊而不是作弊,实际训练自己以预测您必须降低信息量,实际训练自己以预测您必须降低信息量,z的内容,以强制系统使用,z的内容,以强制系统使用,嗯来自x的信息可以做出最佳预测。
嗯来自x的信息可以做出最佳预测,好吧,现在我们可以使用该技巧来训练或转发模型,好吧,现在我们可以使用该技巧来训练或转发模型,因为福特模型基本上只是这个的一个实例,因为福特模型基本上只是这个的一个实例。
这是呃这个自治的项目,这是呃这个自治的项目,驾驶那个表演学生迈克尔足够,驾驶那个表演学生迈克尔足够,一直在努力,而阿尔弗雷多(Ulfredo)一直在努力,并且,一直在努力。
而阿尔弗雷多(Ulfredo)一直在努力,并且。
仍在从事这个项目,所以在这里您要训练汽车,仍在从事这个项目,所以在这里您要训练汽车,自己开车,很难预测您周围的汽车将要行驶什么,很难预测您周围的汽车将要行驶什么,这样做是为了将相机放在高速公路上方。
然后观看,这样做是为了将相机放在高速公路上方,然后观看,汽车经过,您可以跟踪每辆汽车,然后,汽车经过,您可以跟踪每辆汽车,然后,提取汽车的附近,提取汽车的附近,基本上每辆车周围都有一个矩形。
基本上每辆车周围都有一个矩形,表示其他汽车相对于,表示其他汽车相对于,到您的车上,这就是底部代表的内容,到您的车上,这就是底部代表的内容,嗯,所以在底部,您有一个以矩形为中心的小矩形,嗯,所以在底部。
您有一个以矩形为中心的小矩形,给定的车,然后周围的所有车都是,给定的车,然后周围的所有车都是,你知道那辆车以那个车为中心的一个矩形,你知道那辆车以那个车为中心的一个矩形,在中间的标准化位置。
在中间的标准化位置,矩形,您为每辆车执行此操作它为您提供的是每辆车一个序列,矩形,您为每辆车执行此操作它为您提供的是每辆车一个序列,周围的汽车将要做什么,周围的汽车将要做什么。
我们可以用它来训练一个向前的模型,我们可以用它来训练一个向前的模型,可以预测我们将要运行的汽车,可以预测我们将要运行的汽车,问题是这个前向模型是否正在预测所有可能的期货。
问题是这个前向模型是否正在预测所有可能的期货,不管我们采取了什么行动,不管我们采取了什么行动,一组期货,因此采取了一项行动,甚至,一组期货,因此采取了一项行动,甚至,因此,给定一个初始状态。
一个动作和百分之一的特定值,因此,给定一个初始状态,一个动作和百分之一的特定值,潜在变量将做出单个预测,然后,潜在变量将做出单个预测,然后,您可以更改潜在变量,然后进行多项预测,您可以更改潜在变量。
然后进行多项预测,你当然可以改变动作,你当然可以改变动作,所以我重新画了我以前在这里画的小图,所以我重新画了我以前在这里画的小图,状态基本上是此视频中的三帧序列,状态基本上是此视频中的三帧序列,嗯。
这里没有抽象状态,只是,嗯,这里没有抽象状态,只是,图片本身蓝色的车是我们的车,绿色的车是我们的车,图片本身蓝色的车是我们的车,绿色的车是我们的车,卡片,因此您可以从,卡片,因此您可以从。
过去是通过这个试图预测的神经网络运行的,过去是通过这个试图预测的神经网络运行的,下一个呃下一个帧好用,下一个呃下一个帧好用,基本上是一个大的卷积网络,作为一个预测变量和一个大的商业。
基本上是一个大的卷积网络,作为一个预测变量和一个大的商业,网络作为解码器,但这里有一个潜在变量,还有一个动作,网络作为解码器,但这里有一个潜在变量,还有一个动作,在这里没有画入这个,在这里没有画入这个。
而且系统还具有编码器,因此看起来更像这样。
而且系统还具有编码器,因此看起来更像这样,还有一个,这里的动作不代表但,还有一个,这里的动作不代表但,想象有一个,所以x是过去的帧,想象有一个,所以x是过去的帧,预测输入表示形式的预测变量。
预测输入表示形式的预测变量,然后,该表示进入解码器的卷积网络,然后,该表示进入解码器的卷积网络,预测它基本上是相加组合,预测它基本上是相加组合,具有潜在变量,因此将其添加到潜在变量,具有潜在变量。
因此将其添加到潜在变量,在进入预测下一个状态的解码器之前,在进入预测下一个状态的解码器之前,而潜在变量本身就是隔离变量,但是,而潜在变量本身就是隔离变量,但是,由编码器预测,编码器本身也是卷积网络。
由编码器预测,编码器本身也是卷积网络,它需要过去,将来和未来,并试图预测,它需要过去,将来和未来,并试图预测,现在,您必须限制潜变量的理想值,现在,您必须限制潜变量的理想值,信息内容。
在此特定项目中使用,信息内容,在此特定项目中使用,有点像vae般的方法,有点像vae般的方法,我的意思是,这基本上是一场具有一些技巧的竞赛,我的意思是,这基本上是一场具有一些技巧的竞赛。
所以这是从获得的分布中采样的,所以这是从获得的分布中采样的,从编码器的输出到编码器的输出a,从编码器的输出到编码器的输出a,z bar的预测以及方差和,z bar的预测以及方差和。
z是从该分布中的采样的,因此它不是,z是从该分布中的采样的,因此它不是,优化采样,但也有一个术语试图最小化平方和,但也有一个术语试图最小化平方和,随时间变化的疾病数量,这是vae的标准uh技术。
随时间变化的疾病数量,这是vae的标准uh技术,然后进入解码器,因此这是有条件的趋势,然后进入解码器,因此这是有条件的趋势,自动编码器基本上还有另一个技巧,自动编码器基本上还有另一个技巧。
这就是将时间z的一半简单地设置为零,因此,这就是将时间z的一半简单地设置为零,因此,一半时间,系统被告知您不允许使用z,一半时间,系统被告知您不允许使用z,只是让您的背靠背猜测为没有z的预测。
只是让您的背靠背猜测为没有z的预测,并促使系统在某种程度上真正地利用了过去,并促使系统在某种程度上真正地利用了过去,比仅使用一个嘈杂的z更大的方法,比仅使用一个嘈杂的z更大的方法。
标准的系统基本忽略的ie类型训练,标准的系统基本忽略的ie类型训练,过去只是作弊,它看起来,过去只是作弊,它看起来,为什么将来我会在实验室中更详细地介绍其余内容的答案。
为什么将来我会在实验室中更详细地介绍其余内容的答案,实验室吧,也许你想说点关于枪支的事,实验室吧,也许你想说点关于枪支的事。
因为我实际上也会在整个演示过程中,因为我实际上也会在整个演示过程中。
你是甘斯,是对比学习的一种特殊形式。
你是甘斯,是对比学习的一种特殊形式,好吧,请记住,当我们谈论基于能量的学习时,好吧,请记住,当我们谈论基于能量的学习时,有数据点,和我们的模型,我要去的,这样画,具有成本函数,它可以具有任何一种。
具有成本函数,它可以具有任何一种,结构,但我只是要像这样绘制,结构,但我只是要像这样绘制,所以这将是一种重建类型,所以这将是一种重建类型,正确的模型,因此可以想象这里的模型是自动编码器,正确的模型。
因此可以想象这里的模型是自动编码器,这样,但您可以想象,这样,但您可以想象,关于任何简化版本,我的意思是更多,关于任何简化版本,我的意思是更多,通用版本只是y进入成本函数而我不是。
通用版本只是y进入成本函数而我不是,指定成本函数看起来像什么,指定成本函数看起来像什么,所以成本函数计算的是y的空间,所以说y是,所以成本函数计算的是y的空间,所以说y是,二维的。
是一种我们希望在数据上偏低而外部数据偏高的能量,是一种我们希望在数据上偏低而外部数据偏高的能量,我故意在这里画了一个不好的能量函数,所以这个能量,我故意在这里画了一个不好的能量函数,所以这个能量。
功能不好是因为,功能不好是因为,在我们拥有数据的该区域附近应该偏低,在我们拥有数据的该区域附近应该偏低,而且外面应该更高,现在很低,而且外面应该更高,现在很低,在这个地区在这里,所以我们讨论了对比方法。
对比方法包括,所以我们讨论了对比方法,对比方法包括,取样并降低其能量,取样并降低其能量,然后取一个对比样本,我要用紫色画出来,所以对比样品应该是,我要用紫色画出来,所以对比样品应该是。
我们的模型已经给低能量但不应该给低能量的样本,我们的模型已经给低能量但不应该给低能量的样本,我们要加倍努力,所以,我们要加倍努力,所以,压低这个家伙的能量压低那个家伙的能量。
压低这个家伙的能量压低那个家伙的能量,如果您继续挑选那些样品和那些,如果您继续挑选那些样品和那些,对比样品好,通过最小化一些目标函数来使能量,通过最小化一些目标函数来使能量,蓝点小而粉红色点的能量高。
则系统将,蓝点小而粉红色点的能量高,则系统将,将会正确学习,因此我们已经看到了几种生成方法,将会正确学习,因此我们已经看到了几种生成方法,对比样本去噪自动编码器的想法,对比样本去噪自动编码器的想法。
就是要取样并以某种方式将其破坏,就是要取样并以某种方式将其破坏,我们已经看到了,差异比较大,需要采样,然后能量下降,差异比较大,需要采样,然后能量下降,带有一些噪音,这给您带来收缩的样品以推高。
带有一些噪音,这给您带来收缩的样品以推高,嗯,您知道我们已经看到了许多其他基于,嗯,您知道我们已经看到了许多其他基于,关于之间的相似性的先验知识,关于之间的相似性的先验知识,样本之间,但这是另一个想法。
样本之间,但这是另一个想法,另一个想法是使用训练神经网络来产生,另一个想法是使用训练神经网络来产生,那些聪明地签约的样品,这就是甘斯的基本想法,那些聪明地签约的样品,这就是甘斯的基本想法。
至少以一种叫做能量型甘子的甘特形式,至少以一种叫做能量型甘子的甘特形式,您可以针对几种配方进行配制,实际上有一个完整的洗衣清单,您可以针对几种配方进行配制,实际上有一个完整的洗衣清单。
各种类型的gans的基本概念,各种类型的gans的基本概念,甘斯的意思是你训练你的能量模型,所以,甘斯的意思是你训练你的能量模型,所以,甘恩背景下的能量模型称为,甘恩背景下的能量模型称为。
歧视者或批评家,但基本上与,歧视者或批评家,但基本上与,能量模型,而您尝试需要消耗低能量,能量模型,而您尝试需要消耗低能量,数据点,然后训练另一个网络,数据点,然后训练另一个网络。
神经网络生成对比数据点,然后将其能量上移,神经网络生成对比数据点,然后将其能量上移,好吧,整个图是这样的,好吧,整个图是这样的,你有一个歧视者,歧视者真的应该是,你有一个歧视者,歧视者真的应该是。
没有这样绘制,可能是一个大型神经网络,没有这样绘制,可能是一个大型神经网络,但最后哎呀抱歉,最后只是成本函数,好,所以它需要一个变量y,它会告诉您,如果低能量是好能量,那么低能量是好还是坏,它会告诉您。
如果低能量是好能量,那么低能量是好还是坏,坏,因此,在一个阶段中,您将从中收集数据,因此,在一个阶段中,您将从中收集数据,设置好并将其交给您的鉴别器,好吧,这是一个,设置好并将其交给您的鉴别器,好吧。
这是一个,真正来自数据,真正来自数据,这是一个训练样本,您说的是,这是一个训练样本,您说的是,其中应该下降好吧,我应该真正写成f,其中应该下降好吧,我应该真正写成f,因为毕竟这只是一个能量函数。
因为毕竟这只是一个能量函数,好的,因此,通过更改,好的,因此,通过更改,参数正确,所以您可以用w减去eta进行替换,参数正确,所以您可以用w减去eta进行替换,df所以f是一个神经网络f是一个神经网络。
df所以f是一个神经网络f是一个神经网络,选择函数,但可能是神经网络,可能是相当复杂的神经,选择函数,但可能是神经网络,可能是相当复杂的神经,净,好吧,这是第一件事,这将使数据充满活力,好吧。
这是第一件事,这将使数据充满活力,点小好吧,现在有一种形式是,点小好吧,现在有一种形式是,有条件的,所以你有条件的形式,有条件的,所以你有条件的形式,这里是一个额外的输入,这是一个观察。
这里是一个额外的输入,这是一个观察,好的,但您可以将此条件再次设置为“有条件”,好的,但您可以将此条件再次设置为“有条件”,没关系,第二阶段还是对比样本,没关系,第二阶段还是对比样本。
您有一个样本的潜在变量z,您有一个样本的潜在变量z,从某些分布中可以很容易地从一个样本中取样的分布,从某些分布中可以很容易地从一个样本中取样的分布,高斯多元多元高斯,高斯多元多元高斯,或制服。
或者您通过所谓的生成器运行的东西,或制服,或者您通过所谓的生成器运行的东西,所以这是一个神经网络,而神经网络会产生,所以这是一个神经网络,而神经网络会产生,类似白色的东西好吧,它只是产生一个图像。
让我们说,类似白色的东西好吧,它只是产生一个图像,让我们说,图片,再一次通过鉴别器运行,再一次通过鉴别器运行,但是现在你想做的很好,但是现在你想做的很好,所以实际上我之前告诉你的是谎言。
所以实际上我之前告诉你的是谎言,呃你不这样做更新,好的,但是在这里您想要做的是,好的,但是在这里您想要做的是,此y栏高的fw,好的,而您现在要做的是训练,而您现在要做的是训练,鉴别器和发生器同时。
鉴别器和发生器同时,因此,您首先必须提出一个成本函数,一个损失函数,因此,您首先必须提出一个成本函数,一个损失函数,而这个损失函数将是你知道一些,而这个损失函数将是你知道一些,嗯。
您知道每个样本损失函数的夏季样本,嗯,您知道每个样本损失函数的夏季样本,基本上是y的f和y的f的函数,基本上是y的f和y的f的函数,当然,y bar是从随机采样的潜在变量z生成的,当然。
y bar是从随机采样的潜在变量z生成的,现在这个成本函数需要是y的f的递减函数,现在这个成本函数需要是y的f的递减函数,y的f的增加函数还可以,y的f的增加函数还可以。
您可以使用几乎任何所需的成本函数,您可以使用几乎任何所需的成本函数,它使y减小,并且使y bar的f增加,它使y减小,并且使y bar的f增加,或只要能使差值减小y的f减去y bar的f。
或只要能使差值减小y的f减去y bar的f,这样的例子可能是,这样的例子可能是,例子好吧,这样说我的损失函数,例子好吧,这样说我的损失函数,将是,y的f加上一些余量减去y的f。
y的f加上一些余量减去y的f,正面部分好,所以这是一个铰链,正面部分好,所以这是一个铰链,它说我想使y bar的f小于,它说我想使y bar的f小于,除了那个,我不在乎,除了那个,我不在乎。
比我对不起我把这个倒退了,比我对不起我把这个倒退了,所以总体上来说,它是y bar f的函数,所以总体上来说,它是y bar f的函数,好吧,所以它想使y bar的f大于m好吧,这就是一个例子,好吧。
所以它想使y bar的f大于m好吧,这就是一个例子,实际使用的成本函数,最常用的gans配方,实际使用的成本函数,最常用的gans配方,基本上将每个这些术语插入到S型中。
基本上将每个这些术语插入到S型中,并尝试使您知道应用于y的f的S形近似,并尝试使您知道应用于y的f的S形近似,尽可能将1和sigma应用于f bar尽可能接近零。
尽可能将1和sigma应用于f bar尽可能接近零,你知道它基本上就是这样,所以它是乙状结肠,你知道它基本上就是这样,所以它是乙状结肠,y之f,再加上y bar的负八分之一sigma和。
再加上y bar的负八分之一sigma和,你,你把日志,因为嗯,我的意思是这不是最后一个功能,你,你把日志,因为嗯,我的意思是这不是最后一个功能,这是因为在最后一个功能之前,所以这是。
这是因为在最后一个功能之前,所以这是,有点像交叉熵,但是交叉熵是正的,有点像交叉熵,但是交叉熵是正的,对于积极的阶段和,对于积极的阶段和,负相位um的目标值为负,负相位um的目标值为负,是的。
我不应该这样写,这是错误的,实际上对此感到抱歉,是的,我不应该这样写,这是错误的,实际上对此感到抱歉,但您将其归为每个类别中最大的类别,但您将其归为每个类别中最大的类别,所以从技术上讲。
您知道1的对数加上y的指数f,您知道1的对数加上y的指数f,对于该日志f1加上正确的负号,对于该日志f1加上正确的负号,e至y的f加对数,e至y的f加对数,一加e等于y的负f。
但是您可以想象这种类型的大量目标函数,但是您可以想象这种类型的大量目标函数,好的,这是您要使用的最后一个功能,好的,这是您要使用的最后一个功能,训练鉴别器,但是生成器是用于,训练鉴别器。
但是生成器是用于,鉴别器,但这将是损失函数,鉴别器,但这将是损失函数,发电机,这是一个不同的损失函数,发电机,这是一个不同的损失函数,您将以相同的方式优化这两个损失函数。
您将以相同的方式优化这两个损失函数,发电机的一种是基本上要制造发电机的一种,发电机的一种是基本上要制造发电机的一种,产生鉴别者认为的输出,产生鉴别者认为的输出,很好,但他们不好,所以基本上发电机,很好。
但他们不好,所以基本上发电机,嗯,你想,嗯,你想,调整其权重,使其产生y的输出,调整其权重,使其产生y的输出,酒吧产生低能量供您好,酒吧产生低能量供您好,因此,您对随机变量z进行采样。
然后通过它生成的生成器运行它,因此,您对随机变量z进行采样,然后通过它生成的生成器运行它,ay栏,您遍历y的f,ay栏,您遍历y的f,你得到一些价值,然后回传价值,你得到一些价值,然后回传价值。
通过发电机并使重量适应发电机,以便,通过发电机并使重量适应发电机,以便,这种能量会下降,所以基本上发电机正在尝试寻找白色,这种能量会下降,所以基本上发电机正在尝试寻找白色,能量尽可能低的酒吧。
能量尽可能低的酒吧,好吧,它会训练自己明智地生产,好吧,它会训练自己明智地生产,如果我们正在谈论的话,再次有低能量,如果我们正在谈论的话,再次有低能量,有条件的收益,将有一个x变量要输入,有条件的收益。
将有一个x变量要输入,这两个模块,但最终没有区别,这两个模块,但最终没有区别,所以lg可能只是一个增加的功能,所以lg可能只是一个增加的功能,的酒吧,我认为我们快没时间了,我认为我们快没时间了。
我们时间用完了,所以这是一些目标函数,所以这是一些目标函数,如果g是z的生成器,则g的f的其中z是,如果g是z的生成器,则g的f的其中z是,随机取样,好的,所以您只需备份一下,然后更改参数,好的。
所以您只需备份一下,然后更改参数,g的称呼它们为u,所以现在下降了,这是黄金,g的称呼它们为u,所以现在下降了,这是黄金,从某种意义上说,这被称为游戏,您有两个目标,从某种意义上说,这被称为游戏。
您有两个目标,您需要同时最小化的功能,并且它们不兼容,您需要同时最小化的功能,并且它们不兼容,彼此之间,所以它不是梯度下降,彼此之间,所以它不是梯度下降,问题,你必须找到什么之间的纳什均衡,问题。
你必须找到什么之间的纳什均衡,那两个函数和梯度下降将不起作用,那两个函数和梯度下降将不起作用,默认情况下会导致不稳定,并且存在,默认情况下会导致不稳定,并且存在,关于如何使枪支实际工作的大量论文。
关于如何使枪支实际工作的大量论文,那是一个复杂的部分,但阿尔弗雷多会告诉你有关这一切的一切,那是一个复杂的部分,但阿尔弗雷多会告诉你有关这一切的一切,嗯,明天也许你也想提一提,嗯,明天也许你也想提一提。
带有乙状结肠的,会引起一些问题,带有乙状结肠的,会引起一些问题,如果我们有接近真实流形的样本,如果我们有接近真实流形的样本,是的,然后我想我们可以结束结论了,所以我要提到,是的。
然后我想我们可以结束结论了,所以我要提到,因此,让我们想象一下您的数据,因此,让我们想象一下您的数据,再次基于能源的框架,您的数据围绕着一些流形,但是它是一个细流形,所以它是一个。
您的数据围绕着一些流形,但是它是一个细流形,所以它是一个,无限稀薄的分布,无限稀薄的分布,好的,在gan的原始公式中,区分器将需要gan,好的,在gan的原始公式中,区分器将需要gan,产生零概率。
产生零概率,好吧,所以这里需要产生零概率,好吧,所以这里需要产生零概率,它需要在伊斯特伍德的流形上进行生产,它需要在伊斯特伍德的流形上进行生产,无限概率,这样,如果积分真的是密度估计,这样。
如果积分真的是密度估计,以这种密度在整个空间上的积分,以这种密度在整个空间上的积分,是一个,这当然很难,所以甘斯基本上放弃了,是一个,这当然很难,所以甘斯基本上放弃了,实际学习分布他们想要做的是产生零。
实际学习分布他们想要做的是产生零,原始公式在数据流形之外产生零,原始公式在数据流形之外产生零,并在这里产生一个是乙状结肠的输出,并在这里产生一个是乙状结肠的输出,必须是一个,这意味着加权总和必须等于。
必须是一个,这意味着加权总和必须等于,本质上是无限的,所以没有什么不同,本质上是无限的,所以没有什么不同,嗯,这样做的问题是,如果您成功地训练了系统,嗯,这样做的问题是,如果您成功地训练了系统。
然后您得到的能量函数在数据流形之外为零,并且,然后您得到的能量函数在数据流形之外为零,并且,数据流形上的一个能量功能完全,数据流形上的一个能量功能完全,没用的,因为没用,因为它是高尔夫球场,没用的。
因为没用,因为它是高尔夫球场,对,它是扁平的,所以能量函数,对,它是扁平的,所以能量函数,基本上,与此相对应的是,基本上,与此相对应的是,该权利的否定日志,它将是,该权利的否定日志,它将是。
这将是无穷大,并且成本函数的最小值,这将是无穷大,并且成本函数的最小值,在流形上,例如,如果为零,在流形上,例如,如果为零,如果是自动编码器,能量将小于零,如果是自动编码器,能量将小于零,对,嗯。
这是一个高尔夫球场,对,嗯,这是一个高尔夫球场,无限的海拔高度,实际上对您没有什么用,无限的海拔高度,实际上对您没有什么用,如我之前所说,希望每一种基于能量的,如我之前所说,希望每一种基于能量的,模型。
如果您希望基于能量的模型有用,模型,如果您希望基于能量的模型有用,您想要能量函数平滑,您想要能量函数平滑,你不希望它达到无限,你不希望它达到无限,一个很小的步骤,您希望它平滑,以便可以进行推断。
一个很小的步骤,您希望它平滑,以便可以进行推断,如果您从这里开始,很容易,如果您从这里开始,很容易,在附近的歧管上找到一个点,在附近的歧管上找到一个点,使用和下降例如正确,所以甘的原始配方。
使用和下降例如正确,所以甘的原始配方,导致首先在,导致首先在,鉴别器不稳定性,称为模式崩溃,鉴别器不稳定性,称为模式崩溃,阿尔弗雷多(Alfredo)会告诉您有关情况,最后提供对比功能。
阿尔弗雷多(Alfredo)会告诉您有关情况,最后提供对比功能,基本上没有用的能量函数,基本上没有用的能量函数,所以它不是理想的配方,所以人们有,所以它不是理想的配方,所以人们有,建议的方法。
通过规范化,建议的方法,通过规范化,能量函数基本上迫使它平滑,所以一个很好的例子,能量函数基本上迫使它平滑,所以一个很好的例子,是所谓的船只steingans。
由nyu毕业的martin arjoski提出,由nyu毕业的martin arjoski提出,还有莱昂纳多2和其他一些人,并且的想法是基本上限制重量的大小,并且的想法是基本上限制重量的大小。
鉴别器的功能,鉴别器的功能,很顺利,你知道各种各样的数学论证,很顺利,你知道各种各样的数学论证,在概率框架中,但这是基本思想,并且有很多,在概率框架中,但这是基本思想,并且有很多。
这种变化也对今天的课产生疑问,这种变化也对今天的课产生疑问,它很密集,但至少我们知道您回答了每个问题,它很密集,但至少我们知道您回答了每个问题,它正在通过,所以我认为我们,它正在通过,所以我认为我们。
我们今天一起走,我不确定是否你,我们今天一起走,我不确定是否你,像用另一种形式解释了它,但我没有意识到这是同一回事,像用另一种形式解释了它,但我没有意识到这是同一回事,但是我对政策网络是什么感到迷茫。
但是我对政策网络是什么感到迷茫,好的,这样做是为了使策略网络采用,好的,这样做是为了使策略网络采用,估计世界状况并产生作用,估计世界状况并产生作用,经过培训可以使预期成本降至最低。
经过培训可以使预期成本降至最低,状态越过轨迹,但只需要执行一项操作,状态越过轨迹,但只需要执行一项操作,好的,很好,最后有一部分,很好,最后有一部分,我想你从。开始画了一个新的连接,我想你从。
开始画了一个新的连接,到呃,它下降到,到呃,它下降到,就像通过某个模块连接到一个,所以那里发生了什么,所以,就像通过某个模块连接到一个,所以那里发生了什么,所以,策略网络由pi在此处指示。
策略网络由pi在此处指示,屏幕,因此需要状态,屏幕,因此需要状态,它产生一个动作,好的,好的,好的,这就是正确的政策,您可以观察世界的状况,好的,好的,好的,这就是正确的政策,您可以观察世界的状况。
然后您采取行动,我认为还可以,事实上您是一个概率策略,然后您采取行动,我认为还可以,事实上您是一个概率策略,不要采取行动,而是将行动分配给,不要采取行动,而是将行动分配给。
然后您以某种方式选择动作并执行该分配,然后您以某种方式选择动作并执行该分配,但是在这里你知道你只需要采取行动,但是在这里你知道你只需要采取行动,如果动作数是离散的,那么这个pi网络,如果动作数是离散的。
那么这个pi网络,这个政策网络基本上是一个分类器,它产生了一堆,这个政策网络基本上是一个分类器,它产生了一堆,为每个可能的动作评分,然后您采取其中一项动作,为每个可能的动作评分,然后您采取其中一项动作。
概率地或确定性地确定你,概率地或确定性地确定你,得分最高的动作,得分最高的动作,嗯,您可以根据,嗯,您可以根据,得分,然后遍历手机型号,然后继续前进,得分,然后遍历手机型号,然后继续前进,好吧。
所以没有策略连接,好吧,所以没有策略连接,那么动作只是一种相关变量,因此您必须进行优化,那么动作只是一种相关变量,因此您必须进行优化,关于潜在变量以找到其最佳值,因此,关于潜在变量以找到其最佳值,因此。
你现在有这种呃图表,你现在有这种呃图表,动作不是由神经网络产生的,动作不是由神经网络产生的,他们有潜在的变量,你必须弄清楚,他们有潜在的变量,你必须弄清楚,每当您运行模型时,就为每个新产品。
每当您运行模型时,就为每个新产品,您必须找出最佳的行动顺序,以最大程度地减少我的费用,您必须找出最佳的行动顺序,以最大程度地减少我的费用,所以你必须基本上做到这一点,所以你必须基本上做到这一点,例如。
通过对血统进行分级以找出将最小化的序列,例如,通过对血统进行分级以找出将最小化的序列,c在轨迹上的总和称为,c在轨迹上的总和称为,对预测控制进行建模,然后将其与政策相结合,对预测控制进行建模。
然后将其与政策相结合,网络um被称为uh,网络um被称为uh,你知道直接控制本质上是教授,你知道直接控制本质上是教授,你说在保险期间我们需要尽量减少,你说在保险期间我们需要尽量减少,获得最终价值的能量。
但嗯,有两个问题,获得最终价值的能量,但嗯,有两个问题,推理过程不会花费太多时间,推理过程不会花费太多时间,对于实时系统将很有用,第二个是因为,对于实时系统将很有用,第二个是因为,展开。
您必须从头开始一直向后传播,展开,您必须从头开始一直向后传播,有我们在循环神经中面临的所有问题,有我们在循环神经中面临的所有问题,网络,大概是您不会,网络,大概是您不会,得到与当前网络相同的问题。
因为您的前锋,得到与当前网络相同的问题,因为您的前锋,您知道的模型可能实现了,您知道的模型可能实现了,某些实际系统的动态性,因此可能没有问题,某些实际系统的动态性,因此可能没有问题,如果它是物理系统。
则具有某种不可逆性,如果它是物理系统,则具有某种不可逆性,可能是可逆的,所以您可能没有相同的,可能是可逆的,所以您可能没有相同的,与定期循环网一样的问题,但是嗯,是的,您在,与定期循环网一样的问题。
但是嗯,是的,您在,现在在实时情况下同样的问题,现在在实时情况下同样的问题,您使用一种称为“重新播种地平线计划”的形式,您使用一种称为“重新播种地平线计划”的形式,规划,好吧,让地平线规划退缩是吧。
当你在一个,好吧,让地平线规划退缩是吧,当你在一个,这是实时情况,您的系统将,这是实时情况,您的系统将,在未来的几个步骤中运行其正向模型,在未来的几个步骤中运行其正向模型,我不知道可以说几秒钟。
足够多的步骤可以预测,我不知道可以说几秒钟,足够多的步骤可以预测,几秒钟就是你的地平线,那么你就可以做这个模型预测,几秒钟就是你的地平线,那么你就可以做这个模型预测,通过寻找最佳空气来控制您所知道的。
通过寻找最佳空气来控制您所知道的,根据您的,根据您的,模特,好吧,你知道你还没有采取行动,模特,好吧,你知道你还没有采取行动,好吧,您只需运行内部模型即可做出该预测,好吧。
您只需运行内部模型即可做出该预测,嗯,因此,通过针对a进行优化,您可以找到a的序列,嗯,因此,通过针对a进行优化,您可以找到a的序列,优化成本,然后采取第一个行动,优化成本,然后采取第一个行动。
在那个然后你再做一次就好了,所以跟一个你说话观察状态,在那个然后你再做一次就好了,所以跟一个你说话观察状态,现在您可以从世界上观察到一个新的状态,现在您可以从世界上观察到一个新的状态,您的传感器。
然后重复此过程运行您的正向模型,您的传感器,然后重复此过程运行您的正向模型,未来的许多步骤将优化操作顺序,以最大程度地减少您的操作,未来的许多步骤将优化操作顺序,以最大程度地减少您的操作。
成本采取第一个行动然后再做一次,成本采取第一个行动然后再做一次,因此,如果您的前向模型是,因此,如果您的前向模型是,复杂的嗯,所以那时候你需要一个前锋,复杂的嗯,所以那时候你需要一个前锋。
为政策网络建模,为政策网络建模,政策网络基本上将整个过程编译成一个,政策网络基本上将整个过程编译成一个,直接从状态产生最佳动作的神经网络,直接从状态产生最佳动作的神经网络,这可能会或可能不会。
但是现在给您一个很好的猜测,这可能会或可能不会,但是现在给您一个很好的猜测,给你一个具体的例子,这是由,给你一个具体的例子,这是由,居住在纽约的诺贝尔经济学奖得主,居住在纽约的诺贝尔经济学奖得主。
丹尼·卡尼曼(Danny Kahneman)和他谈到了,丹尼·卡尼曼(Danny Kahneman)和他谈到了,人类的心灵被称为系统一和系统二,人类的心灵被称为系统一和系统二,因此。
系统第一是您无需思考就采取行动的过程,因此,系统第一是您无需思考就采取行动的过程,好吧,你是一个非常有经验的司机,你甚至可以开车,好吧,你是一个非常有经验的司机,你甚至可以开车。
注意力集中在你身边的人说话,注意力集中在你身边的人说话,你实际上不需要考虑好吗,你实际上不需要考虑好吗,系统二是更多的故意计划,系统二是更多的故意计划,所以系统二是当您使用世界的内部模型时。
所以系统二是当您使用世界的内部模型时,提前预测未来会发生什么,提前预测未来会发生什么,某种预见会发生什么,然后故意,某种预见会发生什么,然后故意,根据您的模型,您认为应该采取的正确措施是,根据您的模型。
您认为应该采取的正确措施是,这更像是推理,您可以想到这个,这更像是推理,您可以想到这个,关于行动的优化,以最大程度地减少目标,关于行动的优化,以最大程度地减少目标,推理,我们之前谈论过这个,推理。
我们之前谈论过这个,所以基本上,模型预测控制是当您没有政策时,所以基本上,模型预测控制是当您没有政策时,还没学到技巧,就知道您的成本函数是什么,还没学到技巧,就知道您的成本函数是什么。
有一个很好的世界模型,但是你不知道如何反应好,所以,有一个很好的世界模型,但是你不知道如何反应好,所以,初学者棋手会像你,初学者棋手会像你,你看着追逐游戏,你必须考虑所有可能性,你看着追逐游戏。
你必须考虑所有可能性,在玩之前,因为您知道自己不知道去哪里,在玩之前,因为您知道自己不知道去哪里,玩,所以你必须想象所有的可能性,玩,所以你必须想象所有的可能性,如果您是专家玩家,并且与。
如果您是专家玩家,并且与,一个初学者,您立即知道该玩什么,而不必考虑它,一个初学者,您立即知道该玩什么,而不必考虑它,我不知道你是否同时玩过,我不知道你是否同时玩过,国际象棋大师或大师可以玩。
国际象棋大师或大师可以玩,对抗50个人,并在几分钟内击败了他们,对抗50个人,并在几分钟内击败了他们,因为玩家可以从你知道的一个,因为玩家可以从你知道的一个,对手,然后立即玩就完全反应了,对手。
然后立即玩就完全反应了,嗯,您实际上不需要思考,因为,嗯,您实际上不需要思考,因为,你知道他们已经编译过了,如果你愿意的话,你知道他们已经编译过了,如果你愿意的话,以他们对国际象棋的了解。
当您看到这个时,他们不需要思考,以他们对国际象棋的了解,当您看到这个时,他们不需要思考,一种简单的情况,所以从第二系统到第一系统,一种简单的情况,所以从第二系统到第一系统,嗯,一开始学习技能时。
你会犹豫,必须思考,嗯,一开始学习技能时,你会犹豫,必须思考,关于它,您知道开车时会抬头的,关于它,您知道开车时会抬头的,你开车慢,你看着一切,注意,你开车慢,你看着一切,注意,然后当您进行实验时。
您可以很快做出反应,然后当您进行实验时,您可以很快做出反应,基本上,您已经从模型预测控制转变为,基本上,您已经从模型预测控制转变为,如果愿意,可以训练自己的政策网络,如果愿意,可以训练自己的政策网络。
好的,在此过程中,您,好的,在此过程中,您,呃,你的技巧出自某种故意,呃,你的技巧出自某种故意,有计划的有意识的决策机制,有计划的有意识的决策机制,下意识的自动呃决策机制,下意识的自动呃决策机制。
怎样获得专业知识,这就是您从该图转到该图所在的位置的方式,这就是您从该图转到该图所在的位置的方式,直接预测行动而无需计划的政策,直接预测行动而无需计划的政策。
P17:17.Week 9 – Practicum_ (Energy-based) Generative adversarial networks - 大佬的迷弟的粉丝 - BV1o5411p7AB
今天,我们将要讨论的是我们网络的遗传地址或如何,今天,我们将要讨论的是我们网络的遗传地址或如何,实际上使它们正确制造好,从而产生了其他氰酸盐作品。
实际上使它们正确制造好,从而产生了其他氰酸盐作品,无监督学习生成模型,因此再次生成模型,无监督学习生成模型,因此再次生成模型,大部分时间让您获得输入空间中的内容,大部分时间让您获得输入空间中的内容。
那就是你知道这个领域正在发生的事情,我们假设,那就是你知道这个领域正在发生的事情,我们假设,就像这些样本的概率分布一样,就像这些样本的概率分布一样,例如,可以将经典编码器中的解码器视为生成模型,例如。
可以将经典编码器中的解码器视为生成模型,我的看法,也对很多人表示不同意见,他们说生成模型,我的看法,也对很多人表示不同意见,他们说生成模型,必须像您知道的输入那样,遵循我们所处的特定分布。
必须像您知道的输入那样,遵循我们所处的特定分布,没有标签的无监督学习领域,让我们开始吧。
没有标签的无监督学习领域,让我们开始吧,以生成他人开始是网络。
以生成他人开始是网络,所以这是什么东西啊哈,你应该知道没事,这是,所以这是什么东西啊哈,你应该知道没事,这是,编码器的变化编码器的变化基本上就像,编码器的变化编码器的变化基本上就像,普通物品编码器。
在这种情况下,编码器为我们提供了用于,普通物品编码器,在这种情况下,编码器为我们提供了用于,我们从潜在输入采样到Zed的分布,所以唯一,我们从潜在输入采样到Zed的分布,所以唯一。
正常人之间的区别是采样器将再次踢,正常人之间的区别是采样器将再次踢,随机样本,因此无需像一个简单的代码那样编写简单的代码,随机样本,因此无需像一个简单的代码那样编写简单的代码,在这里只有一个输入。
而在这里只有一个代码,现在您将拥有,在这里只有一个输入,而在这里只有一个代码,现在您将拥有,有一些体积,因此该体积内的每个相似点都将被映射,有一些体积,因此该体积内的每个相似点都将被映射,回到原始点。
是的,您知道关于,回到原始点,是的,您知道关于,编码器的变体,让我们看看这些一般生成地址,编码器的变体,让我们看看这些一般生成地址,Arnette看起来像这样,所以我们有了这个东西,实际上是一样的。
Arnette看起来像这样,所以我们有了这个东西,实际上是一样的,对,所以这是怎么回事,我们在同一采样器中有相同的发生器,对,所以这是怎么回事,我们在同一采样器中有相同的发生器,好的。
然后我们要做什么好的,我们在那里有另一个输入,好的,然后我们要做什么好的,我们在那里有另一个输入,在它位于底部的左侧之前,现在输入已完成一半,在它位于底部的左侧之前,现在输入已完成一半,通过。
输出实际上也在一半,最后我们得到了那种,通过,输出实际上也在一半,最后我们得到了那种,交换机,然后在该交换机之上,我们通常会有一个成本网络,交换机,然后在该交换机之上,我们通常会有一个成本网络。
在经典的定义中,在经典的枪支中,我们,在经典的定义中,在经典的枪支中,我们,像歧视者一样,这个评论员需要歧视者,像歧视者一样,这个评论员需要歧视者,错误的选择至少要遵循我同意的年轻建议,因为。
错误的选择至少要遵循我同意的年轻建议,因为,我们很快就会看到为什么现在有点看到了,让我们关注一下,我们很快就会看到为什么现在有点看到了,让我们关注一下,我们有这个成本的网络还可以。
所以让我们拥有基本相似的模型吧,我们有这个成本的网络还可以,所以让我们拥有基本相似的模型吧,右侧的采样器左侧的采样器,右侧的采样器左侧的采样器,左侧有一个解码器,基本上可以生成一些东西。
左侧有一个解码器,基本上可以生成一些东西,但是由于Zed是一种代码,因此我们有一个解码步骤,而在,但是由于Zed是一种代码,因此我们有一个解码步骤,而在,右手边,因为Zed不是代码,而仅仅是输入。
所以我们有一个,右手边,因为Zed不是代码,而仅仅是输入,所以我们有一个,发生器,而这仅仅是例如高斯的样本,发生器,而这仅仅是例如高斯的样本,分布等待您知道正态分布,分布等待您知道正态分布。
那么X hat将由这个最初未经训练的网络生成,那么X hat将由这个最初未经训练的网络生成,相反,成本网络必须弄清楚如果我们喂那个,相反,成本网络必须弄清楚如果我们喂那个,X帽子是蓝色的。
因为我们想给我们就像我们想说的那样是不好的,X帽子是蓝色的,因为我们想给我们就像我们想说的那样是不好的,样本,或者如果我们对粉红色样本进行采样,则将其切换到,样本,或者如果我们对粉红色样本进行采样。
则将其切换到,选择粉红色的我们应该有一个低成本,因为那将使我们能够,选择粉红色的我们应该有一个低成本,因为那将使我们能够,弄清楚我们实际上在做你知道我们确实有一个真实的。
弄清楚我们实际上在做你知道我们确实有一个真实的,对一个好的样本进行抽样,以便总结我们在,对一个好的样本进行抽样,以便总结我们在,生成器将我的leighton输入集映射到此RN,即RN的空间。
生成器将我的leighton输入集映射到此RN,即RN的空间。输入空间,因此我们已经延迟并输入了映射到,输入空间,因此我们已经延迟并输入了映射到,原始输入。
因此我们将橙色的z映射或蓝色的x帽子映射为蓝色的顶部,原始输入,因此我们将橙色的z映射或蓝色的x帽子映射为蓝色的顶部,而是在这种情况下是成本网络,它映射了可以是,而是在这种情况下是成本网络。
它映射了可以是,粉色X或蓝色帽子蓝色的X帽子映射到我的费用,因此在此,粉色X或蓝色帽子蓝色的X帽子映射到我的费用,因此在此,如果这个成本是一个成本模块,实际上是一个成本,例如。
如果这个成本是一个成本模块,实际上是一个成本,例如,杨氏图将是一个正方形,可以输出这个标量,杨氏图将是一个正方形,可以输出这个标量,如果输入是a,则将是一个高的高值,一个大数正大数。如果输入是a。
则将是一个高的高值,一个大数正大数。假输入,如果我们实际上有,假输入,如果我们实际上有,输入来自粉红色的一面,真实的一面好,然后我们如何训练,输入来自粉红色的一面,真实的一面好,然后我们如何训练,系统。
因此系统将以不同的梯度进行训练,系统,因此系统将以不同的梯度进行训练,因此将对成本网络进行培训,以便拥有,因此将对成本网络进行培训,以便拥有,粉红色的输入成本低,深蓝色的输入成本高,粉红色的输入成本低。
深蓝色的输入成本高,好的,例如,您可以考虑一下,好的,例如,您可以考虑一下,如果您希望在这种情况下认识一个歧视者,如果您希望在这种情况下认识一个歧视者,您可能会认为这是两个类别的分类。
您可能会认为这是两个类别的分类,问题,您尝试获得0表示X粉色的粉红色鸡蛋,而1表示蓝色X的鸡蛋,我们将讨论,问题,您尝试获得0表示X粉色的粉红色鸡蛋,而1表示蓝色X的鸡蛋,我们将讨论。
关于为什么为什么在一秒钟内使用此0 1输出很不好,但是,关于为什么为什么在一秒钟内使用此0 1输出很不好,但是,否则,我们只希望该网络学习此费用,所以让我们找出,否则,我们只希望该网络学习此费用。
所以让我们找出,这在图表中的工作方式还记得吗?这在图表中的工作方式还记得吗?变分编码器和变分编码器我们从左边开始,变分编码器和变分编码器我们从左边开始,右手边,我们在选择输入,然后我们在进行输入。
右手边,我们在选择输入,然后我们在进行输入,输入我们正在移动到潜在空间我们正在移动这一点,因为我们,输入我们正在移动到潜在空间我们正在移动这一点,因为我们,添加一些噪音,然后我们回到原始点。
添加一些噪音,然后我们回到原始点,我们试图通过重建将这些积分联系在一起,我们试图通过重建将这些积分联系在一起,定律,然后我们试图通过使用,定律,然后我们试图通过使用,那个相对熵项还可以。
而枪支则是生成对抗性的,那个相对熵项还可以,而枪支则是生成对抗性的,网络我们将从右侧开始,网络我们将从右侧开始,因此我们选择一个随机数作为样本,例如42我们通过一个,因此我们选择一个随机数作为样本。
例如42我们通过一个,发电机,那边有蓝色的X帽子,那么我们将成为,发电机,那边有蓝色的X帽子,那么我们将成为,在另一个网络中进行培训,以期获得更高的价值,在另一个网络中进行培训,以期获得更高的价值。
该蓝色样本,然后我们将选择另一个X,在这种情况下,例如说粉红色X,该蓝色样本,然后我们将选择另一个X,在这种情况下,例如说粉红色X,在螺旋线的右下角,现在将其强制执行为低,在螺旋线的右下角。
现在将其强制执行为低,成本,所以这很像是关于这些成本的第一张初始大图,成本,所以这很像是关于这些成本的第一张初始大图,系统有效,所以让我尝试为您提供两种解释,就像,系统有效。
所以让我尝试为您提供两种解释,就像,定义的种类,这将像数学定义一样进行解释,定义的种类,这将像数学定义一样进行解释,然后视觉定义现在将尝试给您一些,然后视觉定义现在将尝试给您一些,我很喜欢的诠释。
但我不能让我听起来像个傻瓜,但我,我很喜欢的诠释,但我不能让我听起来像个傻瓜,但我,是四点,所以你知道我就去做,这样你就可以考虑发电机了,是四点,所以你知道我就去做,这样你就可以考虑发电机了。
曾经是意大利人,因此我会使用一些适当的意大利口音,所以,曾经是意大利人,因此我会使用一些适当的意大利口音,所以,我现在是一个适当的意大利人,我在意大利南部,我会尝试,我现在是一个适当的意大利人。
我在意大利南部,我会尝试,让一些假人还可以,因为我们非常擅长使用,所以我们,让一些假人还可以,因为我们非常擅长使用,所以我们,第二笔钱,然后我们去德国买一些游戏,第二笔钱,然后我们去德国买一些游戏。
我们带着这笔假钱去了德国,然后有这个不同的人,我们带着这笔假钱去了德国,然后有这个不同的人,看美国就像他妈的意大利人,这是假钱,所以我们,看美国就像他妈的意大利人,这是假钱,所以我们。
不能真正设法购买任何东西,但是由于我们,不能真正设法购买任何东西,但是由于我们,意大利人,我们有香料,我们有间谍,好的,意大利人,我们有香料,我们有间谍,好的,问题持续存在,也许我现在冒犯了人们。
绘制了发生了什么事哦,好吧,问题持续存在,也许我现在冒犯了人们,绘制了发生了什么事哦,好吧,你在享受酷的东西,所以我没有冒犯任何人,你在享受酷的东西,所以我没有冒犯任何人,所以我们有一个间谍回到德国。
当时间谍就像回国一样,所以我们有一个间谍回到德国,当时间谍就像回国一样,妈妈在这里,你给了我们错误的好钱,就像这是一个他妈的,它是,妈妈在这里,你给了我们错误的好钱,就像这是一个他妈的,它是。
只是一个你知道不支持更好的好吧好吧好吧,冷静下来吧,我们,只是一个你知道不支持更好的好吧好吧好吧,冷静下来吧,我们,我们又像回到家吗这是我自己的电影吗?我们又像回到家吗这是我自己的电影吗?
我们回到意大利,你知道我们正在使你能够做到,我们回到意大利,你知道我们正在使你能够做到,精美的艺术和一切,所以我们必须能够赚到更好的钱,所以我们,精美的艺术和一切,所以我们必须能够赚到更好的钱。
所以我们,现在尝试修复间谍告诉我们的问题,以便我们赚更多的钱,现在尝试修复间谍告诉我们的问题,以便我们赚更多的钱,回到德国,尝试购买其他东西,回到德国,尝试购买其他东西,而且德国人就像呃,那更好。
那是假的,而且德国人就像呃,那更好,那是假的,好吧,那么你又有一个间谍叫他回到意大利,说哦,好吧,那么你又有一个间谍叫他回到意大利,说哦,您正在做的事情,他们会了解您知道的capisce。
我们正在解决它,您正在做的事情,他们会了解您知道的capisce,我们正在解决它,钱不,我们正在做几次迭代,谢谢,所以我们尝试,钱不,我们正在做几次迭代,谢谢,所以我们尝试。
赚了越来越多的钱最后我们回到德国,赚了越来越多的钱最后我们回到德国,这种情况下,德国因为他们有钱,所以我们拥有他们的东西,这种情况下,德国因为他们有钱,所以我们拥有他们的东西,我们可以买。
所以我们回到那里,他们就像呵呵,我们可以买,所以我们回到那里,他们就像呵呵,现在看起来很好,我不知道该如何用德国口音制作,现在看起来很好,我不知道该如何用德国口音制作,所以他们接受了钱好了,这就是这些。
所以他们接受了钱好了,这就是这些,我们像发电机一样产生的其他氰化物产生的作品,我们像发电机一样产生的其他氰化物产生的作品,南部的意大利小伙子们正在赚假钱,我们正在努力,南部的意大利小伙子们正在赚假钱。
我们正在努力,在德国购买东西,而德国是歧视者,他们,在德国购买东西,而德国是歧视者,他们,非常严格,而且您知道德国人在政治上还可以,但我不是,非常严格,而且您知道德国人在政治上还可以,但我不是。
随便什么,但是我们确实有间谍权,这是什么间谍,随便什么,但是我们确实有间谍权,这是什么间谍,任何人都可以找出这里的间谍类比,我们没有提到,任何人都可以找出这里的间谍类比,我们没有提到,到目前为止。
损失函数返回prop鉴别器还可以,一些反馈还可以,到目前为止,损失函数返回prop鉴别器还可以,一些反馈还可以,它是反馈,反馈是如何产生的,所以每当我们训练,它是反馈,反馈是如何产生的。
所以每当我们训练,每当我们训练鉴别器或咖啡网络时,我们都会有一些,每当我们训练鉴别器或咖啡网络时,我们都会有一些,渐变允许我在低D中做两件事,渐变允许我在低D中做两件事,我可以降低最终价值。
因此可以调整成本参数,我可以降低最终价值,因此可以调整成本参数,函数让我回到成本函数,所以我们有一些梯度,函数让我回到成本函数,所以我们有一些梯度,最终成本权,所以我们最终获得了最终成本的一些梯度。
最终成本权,所以我们最终获得了最终成本的一些梯度,关于网络的参数,通常是在什么时候,关于网络的参数,通常是在什么时候,训练网络成本网络我将尝试调整参数,例如,训练网络成本网络我将尝试调整参数,例如。
我将有一个最终的较低损失权,这是一个成本网络,我将有一个最终的较低损失权,这是一个成本网络,是网络成本的损失,这有点令人困惑,所以我们,是网络成本的损失,这有点令人困惑,所以我们。
将试图按顺序优化成本网络的参数,将试图按顺序优化成本网络的参数,表现出色,因此损耗与我们可以使用的相同,表现出色,因此损耗与我们可以使用的相同,关于该网络计算的那些成分,您会看到我的。
关于该网络计算的那些成分,您会看到我的,鼠标,所以我知道我在此之上的最终损失将随着,鼠标,所以我知道我在此之上的最终损失将随着,渐变,然后在所有这些渐变中都有一些渐变,渐变。
然后在所有这些渐变中都有一些渐变,知道如果您改变这顶X帽子,您将知道这些最终损失将如何,知道如果您改变这顶X帽子,您将知道这些最终损失将如何,更改权利,因此您现在可以使用此渐变来训练此生成器,更改权利。
因此您现在可以使用此渐变来训练此生成器,为了增加最终损失,所以当我们训练这个成本网络时,为了增加最终损失,所以当我们训练这个成本网络时,鉴于我们输入了这两种不同的输入,因此希望将最终损失降至最低。
鉴于我们输入了这两种不同的输入,因此希望将最终损失降至最低,是的,但是我们也想增加最后的损失,所以我们希望,是的,但是我们也想增加最后的损失,所以我们希望,最终网络的性能较差,因为您知道可以改善生成器。
因此,最终网络的性能较差,因为您知道可以改善生成器,因此,这些信息在这里和这里下来,这是向后的,这些信息在这里和这里下来,这是向后的,正确通过输入梯度将用于调整参数,正确通过输入梯度将用于调整参数。
发电机,以至于它愚弄了成本网络,所以这就是,发电机,以至于它愚弄了成本网络,所以这就是,Z在德国与间谍的类比是固定Z的分布,Z在德国与间谍的类比是固定Z的分布,所以是的,所以Z实际来自一个正态分布。
所以是的,所以Z实际来自一个正态分布,其实真的没有什么可说的,其实真的没有什么可说的,只要选择您的分布,只要选择您的分布,您知道生成器会将该分布映射到一些X帽子中。
您知道生成器会将该分布映射到一些X帽子中,分布有望与X的粉红色分布相匹配,分布有望与X的粉红色分布相匹配,好吧,即使Z的分布是固定的,我们也可以达到,好吧,即使Z的分布是固定的,我们也可以达到。
确保我们可以以最小化,确保我们可以以最小化,成本函数正确,因此尽管分配固定,但生成器将,成本函数正确,因此尽管分配固定,但生成器将,How do you say申请PL,我认为你会采用这种分布。
How do you say申请PL,我认为你会采用这种分布,这样你将成为音乐,可能会流向看起来,这样你将成为音乐,可能会流向看起来,就像粉红色X中的X一样,希望我还没有告诉过您有关。
就像粉红色X中的X一样,希望我还没有告诉过您有关,这个系统的陷阱可以,但是希望我们希望能够,这个系统的陷阱可以,但是希望我们希望能够,从那些蓝色X的X帽子中散发出来,使其类似于原始的。
从那些蓝色X的X帽子中散发出来,使其类似于原始的,粉红色的左手侧分布好吗我回答了你,粉红色的左手侧分布好吗我回答了你,是的,让发生器产生的X可以是,是的,让发生器产生的X可以是,新改进的钱蓝色的好的。
是的,谢谢,我实际上还没有完成,新改进的钱蓝色的好的,是的,谢谢,我实际上还没有完成,那一个粉红色的就是我们在欧洲和欧洲使用的真实欧元,那一个粉红色的就是我们在欧洲和欧洲使用的真实欧元。
蓝色的帽子x蓝色的帽子是我们在意大利赚的钱,蓝色的帽子x蓝色的帽子是我们在意大利赚的钱,雨宫还可以,我有发电机的其他问题本来应该否定的,雨宫还可以,我有发电机的其他问题本来应该否定的,样品。
所以阴性样品还可以,所以这里有两个步骤,样品,所以阴性样品还可以,所以这里有两个步骤,我们向成本网络提供了这些X小屋的负样本,因此,我们向成本网络提供了这些X小屋的负样本,因此,对成本网络进行了培训。
以使其在粉红色投入上的价值较低而,对成本网络进行了培训,以使其在粉红色投入上的价值较低而,蓝色输入上的值可以,因此如果网络成本网络执行,蓝色输入上的值可以,因此如果网络成本网络执行,好吧。
那么最后的损失会很容易很低,所以如果,好吧,那么最后的损失会很容易很低,所以如果,成本网络的效果非常好,那么您将获得最终,成本网络的效果非常好,那么您将获得最终,此处的低损耗仍然会训练发电机以增加。
此处的低损耗仍然会训练发电机以增加,损失,因为我们想欺骗这些德国人十二,损失,因为我们想欺骗这些德国人十二,有道理,您能否澄清这个类比中的间谍,有道理,您能否澄清这个类比中的间谍,是的,间谍是输入梯度。
所以只要有我的成本网络,是的,间谍是输入梯度,所以只要有我的成本网络,训练此费用网络我将在右上角有最后一层,训练此费用网络我将在右上角有最后一层,假设这是一个MSC,例如,每当我,假设这是一个MSC。
例如,每当我,输入的鸡蛋为粉红色或一些您知道的值,或者说,在这种情况下,+ 10是,输入的鸡蛋为粉红色或一些您知道的值,或者说,在这种情况下,+ 10是,我们尝试用当前值的数字加上蓝色家伙的10来计算。
所以我的成本,我们尝试用当前值的数字加上蓝色家伙的10来计算,所以我的成本,网络是一个回归回归网络,您可以将其视为,网络是一个回归回归网络,您可以将其视为,一个线性层,因此就像输入和输入的仿射变换。
一个线性层,因此就像输入和输入的仿射变换,然后这些基本上是最终音量,对于粉红色输入I,我将其设置为零,然后这些基本上是最终音量,对于粉红色输入I,我将其设置为零,在网络输出和零之间有一个MSc。
在网络输出和零之间有一个MSc,因为每当我输入粉红色输入,而是说我选择一个任意,因为每当我输入粉红色输入,而是说我选择一个任意,值10反映了输入是正确的蓝色,所以我们有,值10反映了输入是正确的蓝色。
所以我们有,成本网络,它是输出单个skat标量值的网络,成本网络,它是输出单个skat标量值的网络,这个标量值将放在MSC模块内部,在顶部让我写,这个标量值将放在MSC模块内部,在顶部让我写。
也许所以我们都可以看到发生了什么,所以我在这里有我的M和C,这是我的,也许所以我们都可以看到发生了什么,所以我在这里有我的M和C,这是我的,损失函数正确,因此不要在损失和成本之间混淆,损失函数正确。
因此不要在损失和成本之间混淆,是两件事,所以我在这里有我的MSC,如果我在这里有这个家伙,我的,是两件事,所以我在这里有我的MSC,如果我在这里有这个家伙,我的,目标将为零,对此,我的YY可以,但是。
目标将为零,对此,我的YY可以,但是,如果我在这里将这个人输入到费用网络中,我希望可以说,如果我在这里将这个人输入到费用网络中,我希望可以说,这种情况下任意加十,所以我的MSC在这种情况下会是。
这种情况下任意加十,所以我的MSC在这种情况下会是,成本网络的输出与另一个的零之间的均方误差,成本网络的输出与另一个的零之间的均方误差,情况下,我要在网络工作与十个工作之间拥有MSE,因此网络,情况下。
我要在网络工作与十个工作之间拥有MSE,因此网络,我只是训练,假设我们忘了所有这些东西,只有几个,我只是训练,假设我们忘了所有这些东西,只有几个,与杂草一起的样品我们暂时认为发生器不是。
与杂草一起的样品我们暂时认为发生器不是,改善,所以我们有几个粉红色样品和几个蓝色样品,现在,改善,所以我们有几个粉红色样品和几个蓝色样品,现在,您训练了一个网络,这样,如果我将输入内容设置为粉红色。
您将得到,您训练了一个网络,这样,如果我将输入内容设置为粉红色,您将得到,在输出中为零,然后如果您将蓝色的作为替代,您将,在输出中为零,然后如果您将蓝色的作为替代,您将,强迫网络学习十号好。
所以您要逐步进行一些步骤,强迫网络学习十号好,所以您要逐步进行一些步骤,在参数空间中下降,因此在一种情况下您得到零,在另一种情况下,在参数空间中下降,因此在一种情况下您得到零,在另一种情况下。
每当您提供几个示例时,您就会得到,每当您提供几个示例时,您就会得到,我们有这个网络这个成本网络,您可以考虑拥有成本,我们有这个网络这个成本网络,您可以考虑拥有成本,网络实际上是发电机的损失。
所以如果我有我的话,网络实际上是发电机的损失,所以如果我有我的话,发电机的投入-产出之类的东西,这个成本网络会说,哦,这是,发电机的投入-产出之类的东西,这个成本网络会说,哦,这是,很高的成本。
然后通过尽量减少此成本,您将尝试,很高的成本,然后通过尽量减少此成本,您将尝试,基本上会产生一些最初使该成本增加的网络,基本上会产生一些最初使该成本增加的网络,为您提供一个低价值的商品。
这样您就可以快速澄清了吗?为您提供一个低价值的商品,这样您就可以快速澄清了吗?成本与损失之间的区别哈哈,成本与损失之间的区别哈哈,损失是我们用来训练好东西的东西,所以我在这方面的损失。
损失是我们用来训练好东西的东西,所以我在这方面的损失,案例是MSE损失,这是我的损失,因此,为了训练我的成本网络,我将,案例是MSE损失,这是我的损失,因此,为了训练我的成本网络,我将。
通过最小化MSE损失来具有MSE损失函数,通过最小化MSE损失来具有MSE损失函数,功能我将培训成本网络,功能我将培训成本网络,现在该死的部分来了,我要说,对于我的发电机来说,损失是。
现在该死的部分来了,我要说,对于我的发电机来说,损失是,我要最小化的功能是成本网络,因此对于此生成器,我要最小化的功能是成本网络,因此对于此生成器,损失就是成本,我会尽量减少这个家伙的输出,所以这也是。
损失就是成本,我会尽量减少这个家伙的输出,所以这也是,相对于Yun所教授的基于能量的模型,您拥有的能量,相对于Yun所教授的基于能量的模型,您拥有的能量,我们试图通过最小化损失函数来降低能量,因此。
我们试图通过最小化损失函数来降低能量,因此,损失函数是您用来训练网络参数的功能,损失函数是您用来训练网络参数的功能,好的,那是区别,所以是网络,所以另外一个,好的,那是区别,所以是网络,所以另外一个。
关键是成本就像对某些网络性能的评估,关键是成本就像对某些网络性能的评估,因此,如果我的生成器输出了一个不好看的X,看起来不太好,那么,因此,如果我的生成器输出了一个不好看的X,看起来不太好,那么。
您将拥有高能量等高成本,但为了最大程度地减少,您将拥有高能量等高成本,但为了最大程度地减少,这种能量通常必须使损失最小化,所以但是再次,这种能量通常必须使损失最小化,所以但是再次。
定义我们想要使用的是损失是您按顺序最小化的损失,定义我们想要使用的是损失是您按顺序最小化的损失,训练网络的参数,因此可以将成本视为,训练网络的参数,因此可以将成本视为,你知道我要采取行动。
然后我要采取行动,你知道我要采取行动,然后我要采取行动,那个特定的动作还可以,所以您采取的动作就像写一封电子邮件,那个特定的动作还可以,所以您采取的动作就像写一封电子邮件,关于改变事物。
然后成本将是每一件都在,关于改变事物,然后成本将是每一件都在,你知道有道理吧,你总是学到新的东西,你知道有道理吧,你总是学到新的东西,到目前为止还有其他问题,对不起Alvin,但我仍然。
到目前为止还有其他问题,对不起Alvin,但我仍然,困惑于一个常量生成器,所以对于生成蓝色X的生成器,困惑于一个常量生成器,所以对于生成蓝色X的生成器,我们想增加成本,但您刚才提到我们想将成本降到最低。
我们想增加成本,但您刚才提到我们想将成本降到最低,成本就像发电机的损失函数,我们希望将其最小化,成本就像发电机的损失函数,我们希望将其最小化,损失,所以我们要增加成本,或者我们要降低成本,损失。
所以我们要增加成本,或者我们要降低成本,发电机,您希望将成本降至最低,因此我们训练,发电机,您希望将成本降至最低,因此我们训练,通过将成本降至最低来生成网络价值,所以有两个。
通过将成本降至最低来生成网络价值,所以有两个,这个东西的一部分让我改变颜色,所以第一部分将是,这个东西的一部分让我改变颜色,所以第一部分将是,在这里培训这个人,并进行了成本网络培训,在这里培训这个人。
并进行了成本网络培训,通过最小化此处的MSE,这就是,通过最小化此处的MSE,这就是,成本网络,因此每当我输入一个,成本网络,因此每当我输入一个,粉红色的输入,然后让我们说这个例子,粉红色的输入。
然后让我们说这个例子,我想在每次输入蓝色样本时都获得10的MSc,所以现在我们,我想在每次输入蓝色样本时都获得10的MSc,所以现在我们,在参数空间执行梯度下降的几个步骤。
在参数空间执行梯度下降的几个步骤,成本网络,这样我们就可以最大程度地减少这些损失,所以现在我们在这里有了一个网络,成本网络,这样我们就可以最大程度地减少这些损失,所以现在我们在这里有了一个网络。
如果我输入一个粉红色的输入并输入并输出一个10,它将输出0,如果我输入一个粉红色的输入并输入并输出一个10,它将输出0,如果我到目前为止输入的是蓝色,那么您和我在一起吗?如果我到目前为止输入的是蓝色。
那么您和我在一起吗?网络成本将为蓝色X带来很高的价值,是的,这就是我们,网络成本将为蓝色X带来很高的价值,是的,这就是我们,训练此成本以使其正常运行,以便此成本网络必须产生一些。
训练此成本以使其正常运行,以便此成本网络必须产生一些,在这种情况下,如果我输入一个蓝家伙,则值为10,我们必须生成一个小0,在这种情况下,如果我输入一个蓝家伙,则值为10,我们必须生成一个小0。
如果我输入0,则输出,如果我输入粉红色,则执行此操作,如果我输入0,则输出,如果我输入粉红色,则执行此操作,通过最小化MSE损失好吧,这是第一部分,通过最小化MSE损失好吧,这是第一部分,你和我在一起。
是的,好的,现在我们有了第二个,你和我在一起,是的,好的,现在我们有了第二个,可爱的版本部分Yun喜欢的版本不同,可爱的版本部分Yun喜欢的版本不同,您在网上找不到的版本如下,因此该费用联盟。
您在网上找不到的版本如下,因此该费用联盟,现在,只要您输入内容,就会为您提供接近零的值,现在,只要您输入内容,就会为您提供接近零的值,看起来不错,否则会带来高输出,例如数字,看起来不错。
否则会带来高输出,例如数字,如果您将糟糕的输入内容放到10左右,那么现在终于可以,如果您将糟糕的输入内容放到10左右,那么现在终于可以,训练好发电机,现在发电机将被训练,训练好发电机。
现在发电机将被训练,通过最小化成本网络权利,因此成本网络将,通过最小化成本网络权利,因此成本网络将,在这里说10,所以这个输出蓝色家伙在这里是坏家伙,所以如果生成器,在这里说10。
所以这个输出蓝色家伙在这里是坏家伙,所以如果生成器,现在稍微切换这些动作即可制作出看起来像这个家伙的东西,现在稍微切换这些动作即可制作出看起来像这个家伙的东西,在这里,您从10得到的结果我们右移到0。
因此您可以,在这里,您从10得到的结果我们右移到0,因此您可以,最小化此成本网络的产值,因此我们将成本网络用作,最小化此成本网络的产值,因此我们将成本网络用作,训练发电机的损失好吧,像变蓝是什么意思。
训练发电机的损失好吧,像变蓝是什么意思,斧头更接近粉红色X,所以现在我的发电机输出这些蓝色蓝色X,斧头更接近粉红色X,所以现在我的发电机输出这些蓝色蓝色X,好的,这就像一些看起来不好的图像。
或者是您知道的钱,好的,这就像一些看起来不好的图像,或者是您知道的钱,现在看起来真的很假,如何才能更好地赚钱?现在看起来真的很假,如何才能更好地赚钱?因此,将为您的发生器产生的每个输出提供一个标量值。
因此,将为您的发生器产生的每个输出提供一个标量值,您可以计算偏导数,也可以查看已知的梯度,您可以计算偏导数,也可以查看已知的梯度,那个成本值我想计算这些确定的偏导数,那个成本值我想计算这些确定的偏导数。
案例C,所以DC / d鸡蛋很热,所以这里有包裹,案例C,所以DC / d鸡蛋很热,所以这里有包裹,这是我们的电话,很抱歉,我不能开车,好的,不,这是我们的电话,很抱歉,我不能开车,好的,不,哦,天哪。
这是一个小写字母C哦,就像那挺酷的,所以我来,哦,天哪,这是一个小写字母C哦,就像那挺酷的,所以我来,我的小写字母C相对于X帽子的偏导数,所以现在我,我的小写字母C相对于X帽子的偏导数,所以现在我。
有一个渐变,这个渐变使我可以四处移动,然后找出,有一个渐变,这个渐变使我可以四处移动,然后找出,成本是增加还是减少,所以这是某种,成本是增加还是减少,所以这是某种,也许你知道有点不合标准。
昨天燕也在讲话,也许你知道有点不合标准,昨天燕也在讲话,关于这个,你知道你有一些输入到你的网络中,你可以决定做,关于这个,你知道你有一些输入到你的网络中,你可以决定做。
输入空间中的send中的网格我可以确定例如,输入空间中的send中的网格我可以确定例如,根本没有生成器的体系结构,您从一个样本开始,根本没有生成器的体系结构,您从一个样本开始,现在。
您在此样本空间中执行梯度下降,然后,现在,您在此样本空间中执行梯度下降,然后,您移动这些样本以使成本网络的较低较低价值,您移动这些样本以使成本网络的较低较低价值,这样。
您就可以知道收到的输入看起来像是一个很好的输入。这样,您就可以知道收到的输入看起来像是一个很好的输入。输入正确的粉红色,它使我有点解释自己还是,输入正确的粉红色,它使我有点解释自己还是,它仍然很奇怪。
还有更清晰的谢谢你确定,它仍然很奇怪,还有更清晰的谢谢你确定,是的,这就像在界面中采用渐变并将其向,是的,这就像在界面中采用渐变并将其向,喜欢,然后降低成本,这意味着输入实际上会更好,喜欢。
然后降低成本,这意味着输入实际上会更好,像是对了更好的钱,然后你也可以,像是对了更好的钱,然后你也可以,用这个是你的梯度就在这里,所以现在你,用这个是你的梯度就在这里,所以现在你。
也可以使用链式规则对此小写的偏导数进行计算,也可以使用链式规则对此小写的偏导数进行计算,C关于参数W或生成器,C关于参数W或生成器,好的,在这种情况下,我可以训练发电机,好的,在这种情况下。
我可以训练发电机,超过参数的费用,因此我现在可以更改,超过参数的费用,因此我现在可以更改,发电机上的参数,以便您知道改善网络哦,发电机上的参数,以便您知道改善网络哦,当然很有意义,是的,其他火车。
当然很有意义,是的,其他火车,同时或先培训成本网络订单生成器网络权限,同时或先培训成本网络订单生成器网络权限,人们尝试两者都说,有时在您保持固定状态时最好,人们尝试两者都说,有时在您保持固定状态时最好。
换另一个,因为否则你总是有一个移动的目标,换另一个,因为否则你总是有一个移动的目标,有矛盾的证据,实际上我们现在真的会成为某些来源,有矛盾的证据,实际上我们现在真的会成为某些来源。
代码涵盖了我们的主要陷阱之后,我将回到您的问题上,代码涵盖了我们的主要陷阱之后,我将回到您的问题上,在几分钟内,我们不需要像kld这样的正则化来节省枪支,在几分钟内。
我们不需要像kld这样的正则化来节省枪支,因为我们简单地从正常的环境中正确的目录直接直接,因为我们简单地从正常的环境中正确的目录直接直接,从正态分布中简化这里的橙色家伙,这样就对了。
从正态分布中简化这里的橙色家伙,这样就对了,像随机数这样的简单数字,然后您通过,像随机数这样的简单数字,然后您通过,就是这样的发电机,而我的Google家刚刚复活,就是这样的发电机。
而我的Google家刚刚复活,好的,再次请您回答我的问题,我想还有更多问题,我们有陷阱。好的,再次请您回答我的问题,我想还有更多问题,我们有陷阱。那么我们实际上将要看的是源代码,所以看起来。
那么我们实际上将要看的是源代码,所以看起来,用微分网络代替重建损失哦,用微分网络代替重建损失哦,确实有帮助吗,为什么不喜欢只使用,确实有帮助吗,为什么不喜欢只使用。
重建损失哦这是什么这是一个非常非常好的问题,重建损失哦这是什么这是一个非常非常好的问题。
意思是我完全忘记了,意思是我完全忘记了。
所以在原始编码器上,我们总是从某个点开始,然后我们,所以在原始编码器上,我们总是从某个点开始,然后我们,回到这个空间,我们在移动一点,这样,回到这个空间,我们在移动一点,这样,我们可以覆盖一些区域。
然后回到另一边,现在您尝试,我们可以覆盖一些区域,然后回到另一边,现在您尝试,使这两个接近正确,但在本例中,就我们而言,现在,使这两个接近正确,但在本例中,就我们而言,现在,困扰我们的网。
我们实际上是从右侧开始的,因此在,困扰我们的网,我们实际上是从右侧开始的,因此在,一般的茶黄油氰化物,您从右边开始就没有任何,一般的茶黄油氰化物,您从右边开始就没有任何,这家伙和这家伙之间的联系。
这家伙和这家伙之间的联系,网络告诉您您是否在这种事情上,对吧,我,网络告诉您您是否在这种事情上,对吧,我,不能,在这种情况下,要告诉您一个网络费用,不能,在这种情况下,要告诉您一个网络费用。
然后它会告诉你让我们在这里说零,然后它会告诉你让我们在这里说零,这里有一个生成网络,正在将这些输入映射到此处,这里有一个生成网络,正在将这些输入映射到此处,正确,因此要对其进行训练。
以使歧管周围的值低于,正确,因此要对其进行训练,以使歧管周围的值低于,然后在外面使用更大的值,然后使用一些您想要的东西,然后在外面使用更大的值,然后使用一些您想要的东西,就像你知道的那样。
你可能想要一些曲线水平,就是这样,就像你知道的那样,你可能想要一些曲线水平,就是这样,如果您有鉴别力,那么东西会越来越远,如果您有鉴别力,那么东西会越来越远,他们将迫使这里零,外面一,他们将迫使这里零。
外面一,正是这个流形就像非常非常靠近右边,所以创造了许多,正是这个流形就像非常非常靠近右边,所以创造了许多,问题好吗,让我尝试另一个类比,所以还有另一个类比,问题好吗,让我尝试另一个类比。
所以还有另一个类比,等一下还有更多问题让我继续类比,等一下还有更多问题让我继续类比,让我们看看这是否更有意义让我实际看到自己,让我们看看这是否更有意义让我实际看到自己,可以,我现在可以看到自己没事。
所以您需要一些真实的数据点,可以,我现在可以看到自己没事,所以您需要一些真实的数据点,好的,现在您在这里有一些生成的数据点,好的,现在您在这里有一些生成的数据点,是由发电机产生的,所以这里的点指向那里。
是由发电机产生的,所以这里的点指向那里,假设现在我们正在谈论这个鉴别器,这样我就可以,假设现在我们正在谈论这个鉴别器,这样我就可以,说明那里存在什么问题,因此您可以区分,说明那里存在什么问题。
因此您可以区分,拥有这两种数据,您这里有真实数据,而这里有假数据,拥有这两种数据,您这里有真实数据,而这里有假数据,那么鉴别者将如何做鉴别者决策边界,那么鉴别者将如何做鉴别者决策边界。
只是一条线就可以将这些东西切成两半了,只是一条线就可以将这些东西切成两半了。
对,是的,好的,现在您打开第二步,第二步,对,是的,好的,现在您打开第二步,第二步,是您在此决策边界上打开重力,所以这点在这里,是您在此决策边界上打开重力,所以这点在这里,两者都会掉下来的。
这里的点被决定吸引了,两者都会掉下来的,这里的点被决定吸引了,边界,所以我们首先训练鉴别器,边界,所以我们首先训练鉴别器,决策边界,然后我们训练要点,您拥有这些人的发电机,决策边界,然后我们训练要点。
您拥有这些人的发电机,在这里倒塌,这样您就会遇到新的情况,在这里倒塌,这样您就会遇到新的情况,这里的数据是假数据,在这种情况下,您将再次训练鉴别器,这里的数据是假数据,在这种情况下,您将再次训练鉴别器。
会有一个决策边界,那就是这里的一半,会有一个决策边界,那就是这里的一半,希望您打开重力,以便此处的这一点我们已经在此处折叠了,希望您打开重力,以便此处的这一点我们已经在此处折叠了,现在您不断地重复油炸。
这些东西将会越来越近,现在您不断地重复油炸,这些东西将会越来越近,越来越接近真实数据,所以您拥有了这些要点,越来越接近真实数据,所以您拥有了这些要点,例如接近并到达实际数据位置,所以现在说。
例如接近并到达实际数据位置,所以现在说,您正在使用鉴别器,您具有那些二进制交叉熵,您正在使用鉴别器,您具有那些二进制交叉熵,训练鉴别器的法律现在主要的问题是什么,训练鉴别器的法律现在主要的问题是什么。
我将真实数据带到这里,这样我们就可以看到数据会认为,我将真实数据带到这里,这样我们就可以看到数据会认为,发生,所以你这里有真实的数据,是的,这里是生成的数据,发生,所以你这里有真实的数据,是的。
这里是生成的数据,重叠,现在在这里有一个判别器,所以,重叠,现在在这里有一个判别器,所以,这些样本会重叠,这会区分或不知道该如何处理,这些样本会重叠,这会区分或不知道该如何处理,做对,所以首先。
您将要知道误分类,做对,所以首先,您将要知道误分类,因为你以为自己会像我们实际上会聚,因为你以为自己会像我们实际上会聚,如果您认为我的真实数据在这里,则生成的数据在这里,如果您认为我的真实数据在这里。
则生成的数据在这里,他们在逛街,他们在逛街,所以我实际上设法达成了共识,现在我的歧视者有了,所以我实际上设法达成了共识,现在我的歧视者有了,没有任何线索如何将这些东西分开。
没有任何线索如何将这些东西分开,所以我们不收敛,或者当我们收敛时我们不收敛,我们就可以正确解决问题了,所以我们不收敛,或者当我们收敛时我们不收敛,我们就可以正确解决问题了,歧视者。
我认为这个问题只区分了两个阶级,歧视者,我认为这个问题只区分了两个阶级,这个社区无法区分这两个类,因为此输入是,这个社区无法区分这两个类,因为此输入是,你知道没有更多的分离权了。
他们会像你真正管理的那样,你知道没有更多的分离权了,他们会像你真正管理的那样,让发生器执行非常非常好的样本,然后这些,让发生器执行非常非常好的样本,然后这些,样本是您无法将它们与实际真实样本区分开来吗?
样本是您无法将它们与实际真实样本区分开来吗?知道歧视者对于如何基本分辨没有任何线索,知道歧视者对于如何基本分辨没有任何线索,他们分开,所以每当发电机工作,他们分开,所以每当发电机工作,歧视性行不通,嗯。
那很好,歧视性行不通,嗯,那很好,另一个问题,让我们再说一遍,您通过数据获得了伪数据,另一个问题,让我们再说一遍,您通过数据获得了伪数据,在这里,现在您有了一个完美的惊人真棒鉴别器,在这里。
现在您有了一个完美的惊人真棒鉴别器,这里绝对是零,然后这里绝对是一个好,所以你就像一个,这里绝对是零,然后这里绝对是一个好,所以你就像一个,基本上就像一个阶跃函数,您没有S型信号,那将不是。
基本上就像一个阶跃函数,您没有S型信号,那将不是,渐变,它是向右饱和或为零或为一,不再有,渐变,它是向右饱和或为零或为一,不再有,这些点将永远不会向右移动,所以我当时的重力,这些点将永远不会向右移动。
所以我当时的重力,在此之前向您展示的是将这些生成的数据吸引到,在此之前向您展示的是将这些生成的数据吸引到,决策边界基本上是我看到的梯度,决策边界基本上是我看到的梯度,鉴别器或成本网络关于。
鉴别器或成本网络关于,您知道发生器生成的样本,但是现在如果这些鉴别器,您知道发生器生成的样本,但是现在如果这些鉴别器,有一个完美的是一个完美的鉴别器零这里一个很好。
有一个完美的是一个完美的鉴别器零这里一个很好,就像没有任何东西一样完全平坦,就像没有任何东西一样完全平坦,正确的渐变,因此,如果您在这里,可以说我们有,正确的渐变,因此,如果您在这里,可以说我们有。
数据以1 1 X右以1一维表示,您有0 0 0,那么您就有1 1 1 1 1,数据以1 1 X右以1一维表示,您有0 0 0,那么您就有1 1 1 1 1,但是,如果只有你知道没有梯度。
那么这一点将永远不会,但是,如果只有你知道没有梯度,那么这一点将永远不会,知道他们必须朝那个方向前进,我们知道吗,哦,我们是坏人,我们有坏人,知道他们必须朝那个方向前进,我们知道吗,哦,我们是坏人。
我们有坏人,值,但我们不知道朝哪个方向移动,因为没有,值,但我们不知道朝哪个方向移动,因为没有,梯度的任何方向为0都是一个平坦的区域,所以这是,梯度的任何方向为0都是一个平坦的区域,所以这是,对的。
这是一个非常大的问题,所以每当我们使用蜂窝网络训练此生成器时,对的,这是一个非常大的问题,所以每当我们使用蜂窝网络训练此生成器时,网络,您要确保此成本随着您的移动而逐渐增加,网络。
您要确保此成本随着您的移动而逐渐增加,远离您的真实数据区域,这样就可以使,远离您的真实数据区域,这样就可以使,就像一个,你知道一个凸的东西是正确的,所以如果你继续向上上升,就像一个。
你知道一个凸的东西是正确的,所以如果你继续向上上升,您总是知道要跌倒哪个方向才能到达该位置,您总是知道要跌倒哪个方向才能到达该位置,您的真实数据没问题,我的Google主页不断重启,这就像很小。
您的真实数据没问题,我的Google主页不断重启,这就像很小,运到那里的东西很少,到目前为止你还清楚吗,运到那里的东西很少,到目前为止你还清楚吗,是的,是的,最后一个问题是,如果我们得到一个发电机。
是的,是的,最后一个问题是,如果我们得到一个发电机,这里的点映射到这里的点,您知道所有权重均为0,这里的点映射到这里的点,您知道所有权重均为0,让最终的偏差恰好是这个值,然后就完成了。
让最终的偏差恰好是这个值,然后就完成了,因为成本函数的判别器会说如果做得很好,因为成本函数的判别器会说如果做得很好,工作,发电机说是,然后发电机只输出一个,工作,发电机说是,然后发电机只输出一个。
右边的图像称为模式塌陷,意味着所有点都映射到,右边的图像称为模式塌陷,意味着所有点都映射到,一分而已,您无能为力,所以实际的完整故事是,一分而已,您无能为力,所以实际的完整故事是。
如果这里的每个点都映射到这里的这个点,如果这里的每个点都映射到这里的这个点,然后歧视者会告诉我,这是假点,所以,然后歧视者会告诉我,这是假点,所以,发电机将切换,并说这是正确的声音,现在,发电机将切换。
并说这是正确的声音,现在,你训练鉴别器鉴别器说哦,这是假的好吗,你训练鉴别器鉴别器说哦,这是假的好吗,所以发电机我们说这是真正的一个好吧,所以你基本上有一个,所以发电机我们说这是真正的一个好吧。
所以你基本上有一个,只是在样本中跳跃的网络,除非您无法解决,只是在样本中跳跃的网络,除非您无法解决,您介绍一些您知道的惩罚,因为他们在,您介绍一些您知道的惩罚,因为他们在,发电机的输出消失梯度。
只要你喜欢,发电机的输出消失梯度,只要你喜欢,饱和的歧视者,我们不喜欢我们喜欢学习的歧视者,饱和的歧视者,我们不喜欢我们喜欢学习的歧视者,这种平滑的法则成本权利成本网络模块崩溃就是这样。
这种平滑的法则成本权利成本网络模块崩溃就是这样,就像现在描述的那样,我们只折叠一个不稳定的特定点,就像现在描述的那样,我们只折叠一个不稳定的特定点,是的,重点是每当您获得非常可爱的生成器时,是的。
重点是每当您获得非常可爱的生成器时,您知道歧视者将不知道发生了什么事,您知道歧视者将不知道发生了什么事,就像很大的很大的损失,因为您可能会知道这些要点,就像很大的很大的损失,因为您可能会知道这些要点。
归为这一类完全归为别的,归为这一类完全归为别的,你会得到一些非常大的梯度,磁盘发射器会跳开,然后,你会得到一些非常大的梯度,磁盘发射器会跳开,然后,他们产生的这个委员会将使你知道并且决定边界。
他们产生的这个委员会将使你知道并且决定边界,将进入所有掩体掩体,然后您将让发电机尝试,将进入所有掩体掩体,然后您将让发电机尝试,在这些之后运行,您知道会逃避决策边界,所以在那里,在这些之后运行。
您知道会逃避决策边界,所以在那里,没有收敛,有一个平衡,所以它是一个不稳定的平衡点,没有收敛,有一个平衡,所以它是一个不稳定的平衡点,这是非常棘手的,所以我知道我们有一些,这是非常棘手的。
所以我知道我们有一些,minimax问题,这里有一个再生器和一个成本,但通常在您使用,minimax问题,这里有一个再生器和一个成本,但通常在您使用,优化这一点。
我不知道是否真的有任何直接的方法来确保您,优化这一点,我不知道是否真的有任何直接的方法来确保您,将您转换为正确的点,我不确定您如何确定是否,将您转换为正确的点,我不确定您如何确定是否。
您会收敛到一个好点,但是通过目测检查您的输出,您会收敛到一个好点,但是通过目测检查您的输出,发电机,或者你可以训练几把,你可以训练几把枪,然后你,发电机,或者你可以训练几把,你可以训练几把枪,然后你。
在一些图像数据集上训练鉴别器,现在您进行分类,在一些图像数据集上训练鉴别器,现在您进行分类,您可以评估图像的质量,所以这就像某种,您可以评估图像的质量,所以这就像某种,我们不喜欢的指标不好。
但这就是所谓的开始,我们不喜欢的指标不好,但这就是所谓的开始,得分,这样您就可以训练网络,比方说初始网络就是为什么,得分,这样您就可以训练网络,比方说初始网络就是为什么。
在您知道图像数据集的基础上调用初始分数,然后可以将,在您知道图像数据集的基础上调用初始分数,然后可以将,尝试看看这些生成器是否在为您提供看起来像,尝试看看这些生成器是否在为您提供看起来像。
您从这个训练数据集中再次了解到的不是,您从这个训练数据集中再次了解到的不是,很好的指标,但有人试图用它来评估生成,很好的指标,但有人试图用它来评估生成,在开始笔记本之前,先进行评估和生成模型。
在开始笔记本之前,先进行评估和生成模型,让我们来看一个实际的训练律例,让我们来看一个实际的训练律例,我们刚刚看到的这两个网络还可以,所以损失函数由我承担,我们刚刚看到的这两个网络还可以。
所以损失函数由我承担,给定输入X的网络和以橙色显示的潜在输入Zed可以是以下内容,给定输入X的网络和以橙色显示的潜在输入Zed可以是以下内容,所以给定我的粉红色输入X,它可以等于我的成本C。
然后加上这部分,所以给定我的粉红色输入X,它可以等于我的成本C,然后加上这部分,现在,这是扩大M的积极部分减去我要去的成本,现在,这是扩大M的积极部分减去我要去的成本,给出一个生成的输入。
该输入由我的发电机输出,给出一个生成的输入,该输入由我的发电机输出,输入潜在的输入一个随机数可以,输入潜在的输入一个随机数可以,所以Z的G给了我一个虚假的输入,然后C不得不给我一个成本。
所以Z的G给了我一个虚假的输入,然后C不得不给我一个成本,因为这个成本会比M低,所以这部分将是正数,因为这个成本会比M低,所以这部分将是正数,作为C,成本网络为此给了我一个成本,作为C。
成本网络为此给了我一个成本,生成的输入大于M,然后在这里和我的这部分,生成的输入大于M,然后在这里和我的这部分,一些大于M的数字将是负数,然后因为我采用了,一些大于M的数字将是负数,然后因为我采用了。
正部分为0,因此只要,正部分为0,因此只要,Cost Network给我的输出大于M的输入,Cost Network给我的输出大于M的输入,我的发电机在另一侧提供的费用,我的发电机在另一侧提供的费用。
与正确的墨水输入权相关联,以便压缩,与正确的墨水输入权相关联,以便压缩,降至零,您只需要让成本网络在任何时候输出零即可,降至零,您只需要让成本网络在任何时候输出零即可,输入是好的输入。
所以在示例中的示例中,输入是好的输入,所以在示例中的示例中,我是说M为10,因此鼓励网络输出一个,我是说M为10,因此鼓励网络输出一个,标量至少为10,至少为10,并且正确的输入来自,标量至少为10。
至少为10,并且正确的输入来自,生成器,该项在此处提升等于0的原因,生成器,该项在此处提升等于0的原因,因此,这是我们可以用来训练成本网络的可能损失的一个示例,因此。
这是我们可以用来训练成本网络的可能损失的一个示例,知道这是在本文中由Jake icon和yon从2016年完成的,然后,知道这是在本文中由Jake icon和yon从2016年完成的,然后。
我们会很好地训练白色3/4的发电机,因为您只是,我们会很好地训练白色3/4的发电机,因为您只是,培训发电机的损失等于网络的成本,培训发电机的损失等于网络的成本,成本网络为我提供了给定的生成样本权。
成本网络为我提供了给定的生成样本权,所以我的发电机将只是试图获得低成本,这很漂亮,所以我的发电机将只是试图获得低成本,这很漂亮,好的,再次可以,我们俩都可以更具体地知道这是什么费用吗,好的,再次可以。
我们俩都可以更具体地知道这是什么费用吗,网络我有,但我还没有告诉您您可以做出的特定选择,网络我有,但我还没有告诉您您可以做出的特定选择,创建一个基于输入为您提供此标量的网络,但我。
创建一个基于输入为您提供此标量的网络,但我,认为您可能已经对如何建立此网络有了一些想法,因此,认为您可能已经对如何建立此网络有了一些想法,因此,该网络的可能选择将在以下内容中进行。
该网络的可能选择将在以下内容中进行,成为MSE之间的二次方差,成为MSE之间的二次方差,解码特定输入的编码,因此这是对,解码特定输入的编码,因此这是对,输出编码器-输入本身与标准平方成正比。
所以这怎么做,输出编码器-输入本身与标准平方成正比,所以这怎么做,效果很好,就像仅对粉红色样本训练输出编码器一样,效果很好,就像仅对粉红色样本训练输出编码器一样,只能正确重建粉红色样本,因此距离。
只能正确重建粉红色样本,因此距离,在我的粉红色输入与当我重新编码输出时之间,在我的粉红色输入与当我重新编码输出时之间,如果我们训练这个,粉红色的输入将非常小,如果我们训练这个,粉红色的输入将非常小。
恰好相反,如果我在此处输入的内容与实际情况相去甚远,该怎么办,恰好相反,如果我在此处输入的内容与实际情况相去甚远,该怎么办,在数据集管井上,我的输出编码器已经过训练以输出,在数据集管井上。
我的输出编码器已经过训练以输出,保留在数据流形上的东西,因此,保留在数据流形上的东西,因此,我的实际输入和我的输出编码器之间会有很大的不同,我的实际输入和我的输出编码器之间会有很大的不同。
可以给您正确的课程网络特定选择的好处是,可以给您正确的课程网络特定选择的好处是,你可以在没有发电机的情况下训练这些编码器,你可以在没有发电机的情况下训练这些编码器,只需训练一个自动编码器就可以了。
就像一个完全隐藏的东西一样,只需训练一个自动编码器就可以了,就像一个完全隐藏的东西一样,层完整,您使用某种形式化和信息,层完整,您使用某种形式化和信息,限制瓶颈,但尽管如此,您实际上可以在没有。
限制瓶颈,但尽管如此,您实际上可以在没有,拥有发电机权利,您将只需了解什么是火车,拥有发电机权利,您将只需了解什么是火车,数据流形,现在您可以将其用作代理来建立,数据流形,现在您可以将其用作代理来建立。
当前输入和网络之间的距离差,当前输入和网络之间的距离差,认为训练歧管上最接近的输入可以,好的,让我们,认为训练歧管上最接近的输入可以,好的,让我们,如果没有问题,请在最后五分钟继续前进。
如果没有问题,请在最后五分钟继续前进,一起从Piper的示例中阅读源代码,我认为这是,一起从Piper的示例中阅读源代码,我认为这是。
这将是我们正在阅读的第一种情况,这将是我们正在阅读的第一种情况,程序员开发人员代码我不是程序员,所以无论您身在何处,程序员开发人员代码我不是程序员,所以无论您身在何处,到目前为止。
我一直在消费一些您知道的笔记本电脑,到目前为止,我一直在消费一些您知道的笔记本电脑,具有教育意义的教学内容,看起来很漂亮,具有教育意义的教学内容,看起来很漂亮,漂亮,并且输出漂亮,现在您将要阅读,漂亮。
并且输出漂亮,现在您将要阅读,这样的人写的实际上不错的代码就是他们的工作,所以,这样的人写的实际上不错的代码就是他们的工作,所以,我们起床了,我们不去PI进行深度学习,而是要申请,我们起床了。
我们不去PI进行深度学习,而是要申请,用火炬举例来说明我的火炬,有些姿势可以,所以让我们放大一点就可以了,用火炬举例来说明我的火炬,有些姿势可以,所以让我们放大一点就可以了。
这里有直流电枪,这里很顺利,所以我们可以通过。
这里有直流电枪,这里很顺利,所以我们可以通过。
编写正确的主要代码,所以我们从您开始就知道要导入一堆cr脚的东西,编写正确的主要代码,所以我们从您开始就知道要导入一堆cr脚的东西,像往常一样,您有一个参数解析器,以便您可以发送一些,像往常一样。
您有一个参数解析器,以便您可以发送一些,特定命令命令行中的特定参数将打印出所有,特定命令命令行中的特定参数将打印出所有,当前设置的选项,这个试图建立一个目录,否则,当前设置的选项,这个试图建立一个目录。
否则,知道这是什么,如果您选择手动种子,那么您将成为,知道这是什么,如果您选择手动种子,那么您将成为,实际设置手动种子的方式可以复制,实际设置手动种子的方式可以复制,结果可能会等于基准。
但我认为这可以加快速度,结果可能会等于基准,但我认为这可以加快速度,如果没有CUDA,您将拥有更快的GPU例程Karnas,如果没有CUDA,您将拥有更快的GPU例程Karnas,无论数据集是什么。
都将永远花费时间来训练这个东西数据路径,无论数据集是什么,都将永远花费时间来训练这个东西数据路径,您将要在此处加载imagenet文件夹或自己的数据集,以便。
您将要在此处加载imagenet文件夹或自己的数据集,以便,这是我们已经知道的所有事情,所以n GPU将是,这是我们已经知道的所有事情,所以n GPU将是,GPU,潜在变量ngf和NDF的大小,GPU。
潜在变量ngf和NDF的大小,它会是T,GF和DF,我认为是生成期货的数量,它会是T,GF和DF,我认为是生成期货的数量,以及区别特征的数量,好吧,我们有一些具体的,以及区别特征的数量,好吧。
我们有一些具体的,体重初始化,这确实有助于开始适当的训练,体重初始化,这确实有助于开始适当的训练,然后让我们看一下这个发生器,好吧,这是,然后让我们看一下这个发生器,好吧,这是,经典的。
然后是子类的生成器,如果不需要,则不需要这些东西,经典的,然后是子类的生成器,如果不需要,则不需要这些东西,您使用的是Python 3,让我们来看一下,我们拥有顺序权利,您使用的是Python 3。
让我们来看一下,我们拥有顺序权利,发生器将提高采样率,以便如您从上次所见,发生器将提高采样率,以便如您从上次所见,您想要从小尺寸到大尺寸的作业,您想要从小尺寸到大尺寸的作业,将使用此模型。
他们拥有基准范数reloj等,然后转置,将使用此模型,他们拥有基准范数reloj等,然后转置,卷积批处理规范真正低,继续前进,最后我们有一个吨位,卷积批处理规范真正低,继续前进,最后我们有一个吨位。
有一个吨位,因为在这种情况下,输出将位于,有一个吨位,因为在这种情况下,输出将位于,负1到+1转发只是通过D向前发送,您发送,负1到+1转发只是通过D向前发送,您发送,通过主体输入,主体是这个主模型。
对,这是,通过主体输入,主体是这个主模型,对,这是,如果要使用多个GPU,则可以并行使用数据,如果要使用多个GPU,则可以并行使用数据,如何使用上面定义的特定初始化进行初始化,以便。
如何使用上面定义的特定初始化进行初始化,以便,简而言之,就是您输入什么东西?简而言之,就是您输入什么东西?这里的NZ大小正确,而NZ是潜伏的大小,即n Z&Z,这里的NZ大小正确,而NZ是潜伏的大小。
即n Z&Z,100,因此您输入了一个大小为100的向量,因此它是一个张量,100,因此您输入了一个大小为100的向量,因此它是一个张量,100尺寸的尺寸张量,尺寸为100,因此无论何时输入。
100尺寸的尺寸张量,尺寸为100,因此无论何时输入,这100个向量的输出将是64乘以64倍,这100个向量的输出将是64乘以64倍,通道数量(如果您有彩色图像),通道数量(如果您有彩色图像)。
nc和Symbian输出的输入图像的通道数还可以吗,nc和Symbian输出的输入图像的通道数还可以吗,到目前为止应该很清楚,我不知道发生什么疯狂的事情,让我们看看最后一部分,到目前为止应该很清楚。
我不知道发生什么疯狂的事情,让我们看看最后一部分,然后想看看火车如何使鉴别器与您一样,然后想看看火车如何使鉴别器与您一样,在这种情况下有一个顺序,在这种情况下有一个顺序,64乘以64,然后您会漏读,哦。
哦,这很重要,所以,64乘以64,然后您会漏读,哦,哦,这很重要,所以,鉴别器中泄漏的riilu确保您不会杀死,鉴别器中泄漏的riilu确保您不会杀死,如果您位于负区域中,那么这非常。
如果您位于负区域中,那么这非常,如果您这里没有渐变,那真的很重要,那么您知道您不会,如果您这里没有渐变,那真的很重要,那么您知道您不会,训练生成器的方向,这样您就可以保持下降,然后,训练生成器的方向。
这样您就可以保持下降,然后,最终他们使用了S型曲面,因为他们训练这些东西就像一个鉴别器,最终他们使用了S型曲面,因为他们训练这些东西就像一个鉴别器,就像两个类别之间的分类器,而转发只是您发送的东西。
就像两个类别之间的分类器,而转发只是您发送的东西,通过主分支,他们初始化这些网络,所以我们有一个,通过主分支,他们初始化这些网络,所以我们有一个,net D和Natalie,因此此实现方式与。
net D和Natalie,因此此实现方式与,从您之前要经过的事情开始,因为歧视者只是,从您之前要经过的事情开始,因为歧视者只是,它输出的像S形一样,唯一的区别是这条线在这里,所以,它输出的像S形一样。
唯一的区别是这条线在这里,所以,到目前为止,在我们没有演讲之前,我们在演讲中谈论的事情,到目前为止,在我们没有演讲之前,我们在演讲中谈论的事情,乙状结肠,我们稍后进行最后的卷积,乙状结肠。
我们稍后进行最后的卷积,当然,第二个区别是我们不会使用二进制叉号,当然,第二个区别是我们不会使用二进制叉号,熵损失这是公元前万恶之源,再加上这些乙状结肠,熵损失这是公元前万恶之源,再加上这些乙状结肠。
训练生成地址的错误方法我们的网络我们的发电机好了,训练生成地址的错误方法我们的网络我们的发电机好了,因此,尽管如此,我们在这里使用主要配方,让我们看看它是如何,因此,尽管如此,我们在这里使用主要配方。
让我们看看它是如何,工程固定的噪音,你只是创建一个你知道的,工程固定的噪音,你只是创建一个你知道的,一些随机的东西,批次大小不好,正确的大小在这里,我们有两个,一些随机的东西,批次大小不好。
正确的大小在这里,我们有两个,优化程序区分程序的一个优化程序,优化程序区分程序的一个优化程序,生成器,让我们看看您应该知道的五个步骤是什么,生成器,让我们看看您应该知道的五个步骤是什么,对的。
所以让我们首先找出零的梯度,对的,所以让我们首先找出零的梯度,鉴别器好吧,所以现在我们的实际数据将是数据零,鉴别器好吧,所以现在我们的实际数据将是数据零,来自数据加载器的数据,所以我们在这里有真实数据。
然后,来自数据加载器的数据,所以我们在这里有真实数据,然后,将要拥有的标签将是真实的,将要拥有的标签将是真实的,标签好了,然后我们就拥有了鉴别器的网络,标签好了,然后我们就拥有了鉴别器的网络。
带有真实的输入,然后我们有一些真实的输出,然后您,带有真实的输入,然后我们有一些真实的输出,然后您,将要计算的第一部分将是,将要计算的第一部分将是,是我们每次输入时输出之间的二进制交叉熵。
是我们每次输入时输出之间的二进制交叉熵,真实的输入和真实的标签是的,然后我们执行第一步,真实的输入和真实的标签是的,然后我们执行第一步,在这里,我们按照此准则向后执行,该准则正在计算部分,在这里。
我们按照此准则向后执行,该准则正在计算部分,该二元互熵相对于权重的导数,该二元互熵相对于权重的导数,当我们将真实数据馈送到鉴别器并输出时,当我们将真实数据馈送到鉴别器并输出时,尝试匹配真正的标签,好吧。
这是第一个点号,尝试匹配真正的标签,好吧,这是第一个点号,好的,请记住第二部分,第二部分是您会听到噪音,好的,请记住第二部分,第二部分是您会听到噪音,因此,您将网络连接到发电机上,并在,因此。
您将网络连接到发电机上,并在,发电机,因此您会在此处得到一些假输出,我将拥有我的,发电机,因此您会在此处得到一些假输出,我将拥有我的,标签现在已经充满了假标签,所以您可以喂这些东西。
标签现在已经充满了假标签,所以您可以喂这些东西,在鉴别器内部,我们提供了伪数据,但分离的是,在鉴别器内部,我们提供了伪数据,但分离的是,重要的部分,所以现在我们淡入淡出,我们已经填充了假数据。
但我们将其分离,重要的部分,所以现在我们淡入淡出,我们已经填充了假数据,但我们将其分离,从发电机,然后我们再次训练,所以我们有标准,从发电机,然后我们再次训练,所以我们有标准。
计算带有标签的鉴别器输出之间的损失,计算带有标签的鉴别器输出之间的损失,假类好吧,然后我们执行向后的另一步,所以现在我们有了,假类好吧,然后我们执行向后的另一步,所以现在我们有了,两个向后右。
所以我们在这里向后退,在这里向后退,两个向后右,所以我们在这里向后退,在这里向后退,计算我们在以下情况下这些准则的偏导数,计算我们在以下情况下这些准则的偏导数,输入真实数据。
并且在我们输入假数据的情况下,输入真实数据,并且在我们输入假数据的情况下,向后计算这里向后计算这里没有明确的梯度,这是,向后计算这里向后计算这里没有明确的梯度,这是,重要的部分。
因此我们只在开始时调用了“清除梯度”,重要的部分,因此我们只在开始时调用了“清除梯度”,我们首先用真实数据计算梯度,然后,我们首先用真实数据计算梯度,然后,现在,您可以计算出正确的缺陷,因此我们可以。
现在,您可以计算出正确的缺陷,因此我们可以,在优化器中,所以我们计算了后部,他们做了偏导数,在优化器中,所以我们计算了后部,他们做了偏导数,计算了衍生产品的其他部分,现在我们进行搅拌,最后训练。
计算了衍生产品的其他部分,现在我们进行搅拌,最后训练,发电机,然后我们完成了,所以我们如何训练发电机,现在您填充,发电机,然后我们完成了,所以我们如何训练发电机,现在您填充,带有真实标签的标签还可以。
但您仍要输入鉴别器和,带有真实标签的标签还可以,但您仍要输入鉴别器和,伪造数据,该鉴别器应由我的生成器生成,伪造数据,该鉴别器应由我的生成器生成,说哦,这是假数据,但我们说不,不是,这是真实数据。
因此您,说哦,这是假数据,但我们说不,不是,这是真实数据,因此您,基本上交换东西正确,所以当我们计算这些东西时,现在有了,基本上交换东西正确,所以当我们计算这些东西时,现在有了,反向传播。
我们有相反的梯度,反向传播,我们有相反的梯度,方向这些试图使您的网络性能变差,但是我们,方向这些试图使您的网络性能变差,但是我们,将只是随着发电机的权利,所以这一计算,将只是随着发电机的权利。
所以这一计算,每个人的偏导数对,每个人的偏导数对,关于鉴别器的权重和权重的标准,关于鉴别器的权重和权重的标准,发电机,但是我们将只使用发电机,因此,发电机,但是我们将只使用发电机,因此。
生成器将尝试制定较低的标准,并且该标准具有,生成器将尝试制定较低的标准,并且该标准具有,正确交换标签,这是我们每次喂入鉴别器时的真实标签,正确交换标签,这是我们每次喂入鉴别器时的真实标签,伪造数据。
因此这实际上是对歧视者的反对,伪造数据,因此这实际上是对歧视者的反对,就是这样,所以您在这里有一个后退,在这里又有一个后退,您,就是这样,所以您在这里有一个后退,在这里又有一个后退,您。
还有另一个落后的问题,现在还有其他问题,等等我,还有另一个落后的问题,现在还有其他问题,等等我,希望向后进行前两个,因为它们都在同一个哦,是的,希望向后进行前两个,因为它们都在同一个哦,是的,对对好吧。
所以这里的第一个向后是在网络,对对好吧,所以这里的第一个向后是在网络,区分成本网络的实际数据和标签,区分成本网络的实际数据和标签,在这里,我们将以真实的标签感觉我们的领域,所以这是第一个,在这里。
我们将以真实的标签感觉我们的领域,所以这是第一个,落后的一部分,所以您有上课,然后是上课,落后的一部分,所以您有上课,然后是上课,在这种情况下,我每周都会通过,在这种情况下,我每周都会通过。
产生噪音的发生器,然后我向鉴别器提供虚假数据,产生噪音的发生器,然后我向鉴别器提供虚假数据,但是我停止了渐变以在生成器中向后移动,但是我停止了渐变以在生成器中向后移动,准则仍然试图使鉴别器的输出接近于。
准则仍然试图使鉴别器的输出接近于,标签和在这种情况下的标签是假标签,标签和在这种情况下的标签是假标签,与噪声相关,所以不知道它可能会发出,也许我们可以称之为,与噪声相关,所以不知道它可能会发出。
也许我们可以称之为,噪音水平,或者好吧,这是假标签,发现数据是假的,然后,噪音水平,或者好吧,这是假标签,发现数据是假的,然后,由我的生成器网络生成的蓝色X小屋,然后当我放。
由我的生成器网络生成的蓝色X小屋,然后当我放,这些X Hut在这里里面,对不起鉴别器,这些X Hut在这里里面,对不起鉴别器,我会告诉歧视者,嘿,这个应该贴上假标签,我会告诉歧视者,嘿。
这个应该贴上假标签,对,所以你有这个标准,对,所以你有这个标准,因此,在这种向后的情况下,您将获得,因此,在这种向后的情况下,您将获得,在这种情况下关于参数的损失函数,在这种情况下关于参数的损失函数。
当我们提供了虚假数据并试图将其标记为虚假的您时,当我们提供了虚假数据并试图将其标记为虚假的您时,知道假标签对,我们在另一部分中假了目标假标签,知道假标签对,我们在另一部分中假了目标假标签,在这里。
我们实际上是在输入鉴别器的真实数据,然后,在这里,我们实际上是在输入鉴别器的真实数据,然后,告诉您您知道网络有亏损,请在,告诉您您知道网络有亏损,请在,标签应该是真实标签,所以您尝试获得的第一部分。
标签应该是真实标签,所以您尝试获得的第一部分,您得到对应于损失的偏导数,您得到对应于损失的偏导数,在第二部分中将真实数据馈入鉴别器时所计算的是,在第二部分中将真实数据馈入鉴别器时所计算的是。
你有尊敬的损失,你知道你的输出的损失,你有尊敬的损失,你知道你的输出的损失,网络,当我们正确地提供伪造数据时,因此在这里我们只需再做一次,网络,当我们正确地提供伪造数据时,因此在这里我们只需再做一次。
向后,所以在这种情况下,这条线在这条线的后退,向后,所以在这种情况下,这条线在这条线的后退,给你他们他们将积累正确,因为默认情况下python将,给你他们他们将积累正确,因为默认情况下python将。
每次向后演奏时都会累积,所以第一部分会累积,每次向后演奏时都会累积,所以第一部分会累积,在批次的前半段,然后第二次累积,在批次的前半段,然后第二次累积,基本上,您具有第二部分的偏导数,基本上。
您具有第二部分的偏导数,床的第一部分是实际数据,批次的第二部分是,床的第一部分是实际数据,批次的第二部分是,总体而言,假数据会让您知道,总体而言,假数据会让您知道,伪造真实数据和伪造数据,然后在。
伪造真实数据和伪造数据,然后在,为了进行调整以更改网络参数,为了进行调整以更改网络参数,判别射线到目前为止是否有意义,是的,但其中之一,判别射线到目前为止是否有意义,是的,但其中之一。
他们正在增加另一种,所以到目前为止,这两者都试图,他们正在增加另一种,所以到目前为止,这两者都试图,降低标准好的,所以这是您可以在这里看到的,降低标准好的,所以这是您可以在这里看到的。
这里的判据是鉴别器输入时输出的信号,这里的判据是鉴别器输入时输出的信号,使用真实的CPU数据,这样您就可以获得真实的数据和真实的标签,使用真实的CPU数据,这样您就可以获得真实的数据和真实的标签。
所以这里的标准是尝试匹配以支付真实数据和真实标签,所以这里的标准是尝试匹配以支付真实数据和真实标签,好的,到目前为止,是的,第二部分,您尝试使网络在此处尝试匹配,好的,到目前为止,是的,第二部分。
您尝试使网络在此处尝试匹配,伪造数据和伪造劳动还可以,因为输出来自此鉴别器,伪造数据和伪造劳动还可以,因为输出来自此鉴别器,输入的是假数据,然后您知道应该强制,输入的是假数据,然后您知道应该强制。
网络说哦,这些是假标签,所以第一个您有X,网络说哦,这些是假标签,所以第一个您有X,此处的标准对带有航行标签的true数据进行处理,此处的标准对带有航行标签的true数据进行处理。
告诉你这些都是真实的数据,然后训练你就损失了,告诉你这些都是真实的数据,然后训练你就损失了,将要使用此帮助的网络,应将其标记为,将要使用此帮助的网络,应将其标记为,正确的伪造数据。
因此仍在尝试最小化这些标准,正确的伪造数据,因此仍在尝试最小化这些标准,每当您执行优化程序步骤时,优化程序步骤都会尝试降低,每当您执行优化程序步骤时,优化程序步骤都会尝试降低,这一个和这一个都可以。
另一种方法是让,这一个和这一个都可以,另一种方法是让,这一项与这一项之间的总和,您只能在同一步骤中执行一次,这一项与这一项之间的总和,您只能在同一步骤中执行一次,好吧,如果您理解我的意思。
可以选择让我尝试打开,好吧,如果您理解我的意思,可以选择让我尝试打开。
项目8这行在这里,所以在2:26,项目8这行在这里,所以在2:26,然后另一个下降到235,下降到35,所以我们执行了一个,然后另一个下降到235,下降到35,所以我们执行了一个,向后。
我们在右靠码头上进行了此操作,否则我们可以完成,向后,我们在右靠码头上进行了此操作,否则我们可以完成,226再加上另一个235,然后我们就在这里向后执行,226再加上另一个235。
然后我们就在这里向后执行,这是一个替代方案,实际上与现在完全相同,这是一个替代方案,实际上与现在完全相同,如果您在两个不同的条件上向后执行两次,如果您在两个不同的条件上向后执行两次,在两个条件中。
然后仅向后执行一次,在两个条件中,然后仅向后执行一次,好的,然后在下面每当我们在此处训练发电机时,我们交换,好的,然后在下面每当我们在此处训练发电机时,我们交换,标签在这种情况下。
我们尝试训练我们将要训练的,标签在这种情况下,我们尝试训练我们将要训练的,因此,我们使用了生成器优化程序,以便我们尝试诱导,因此,我们使用了生成器优化程序,以便我们尝试诱导,网络以输出为真实标签的标签。
网络以输出为真实标签的标签,当我们提供的数据是假数据时,当我们提供的数据是假数据时,因此,此步骤将不会尝试去训练鉴别器,但我们会,因此,此步骤将不会尝试去训练鉴别器,但我们会,将训练生成器。
使其尝试组成鉴别器,将训练生成器,使其尝试组成鉴别器,表现不佳,所以我们的生成器生成了我们想要的假数据,表现不佳,所以我们的生成器生成了我们想要的假数据,用了很多零件,我们不想朝另一个方向迈出一步。
用了很多零件,我们不想朝另一个方向迈出一步,是的,所以您想向发电机的另一个方向迈出一步,是的,所以您想向发电机的另一个方向迈出一步,是的,您对虚假数据说不,我们希望能够告诉您是虚假的。是的。
您对虚假数据说不,我们希望能够告诉您是虚假的。如果您有虚假数据,那就是您要在此处进行的操作,如果您有虚假数据,那就是您要在此处进行的操作,当您将伪造数据放入鉴别器中时,您也在这些。
当您将伪造数据放入鉴别器中时,您也在这些,给我们的假标签贴上标签,好吧,假标签并不意味着它们是假的,给我们的假标签贴上标签,好吧,假标签并不意味着它们是假的,这些是假数据的标签,也许这很奇怪。
所以这些是,这些是假数据的标签,也许这很奇怪,所以这些是,他们不是假的真实标签为假数据标记自己的真实标签,他们不是假的真实标签为假数据标记自己的真实标签,我想这是种子,这是我不喜欢其他人编写代码的原因。
我想这是种子,这是我不喜欢其他人编写代码的原因,在这种情况下,在生成这些,在这种情况下,在生成这些,判别器,我们试图降低这个标准,我们把这个标准,判别器,我们试图降低这个标准,我们把这个标准。
这两行试图将真实数据与具有真实标签I的真实数据相匹配,这两行试图将真实数据与具有真实标签I的真实数据相匹配,在这种情况下,您尝试将您知道的生成数据与,在这种情况下,您尝试将您知道的生成数据与。
生成的标签还可以,所以这两个部分都在尝试训练,生成的标签还可以,所以这两个部分都在尝试训练,这样就可以区分两件事,这样就可以区分两件事,例如,例如,如果退货产生猫图像,则像生成器那样,例如,例如。
如果退货产生猫图像,则像生成器那样,产生像哦,我试图在这里做一个猫的形象,这是标签说,产生像哦,我试图在这里做一个猫的形象,这是标签说,那应该是猫,因为这个图片我没有试着做猫,所以,那应该是猫。
因为这个图片我没有试着做猫,所以,标签是0,因为我没有尝试制作它,是的,所以我想让我和猫一起去,标签是0,因为我没有尝试制作它,是的,所以我想让我和猫一起去,会变得更容易还是如此。
所以在这里我们将获得真实数据,会变得更容易还是如此,所以在这里我们将获得真实数据,这些是对猫的非常漂亮的可爱照片,所以我们要说,这些是对猫的非常漂亮的可爱照片,所以我们要说,哦。
这个输出应该是正确的名称,因为它非常好看,哦,这个输出应该是正确的名称,因为它非常好看,可爱,然后我要给发电机喂一些垃圾一些噪音,可爱,然后我要给发电机喂一些垃圾一些噪音,看起来像一个怪物,好丑陋的。
所以我们提供这些怪物,看起来像一个怪物,好丑陋的,所以我们提供这些怪物,像图像到鉴别器,然后我们将喂这些,像图像到鉴别器,然后我们将喂这些,与您知道的法律判决,然后无论歧视者说什么,与您知道的法律判决。
然后无论歧视者说什么,可以说这些是怪物,所以在这里您再次向后表演,可以说这些是怪物,所以在这里您再次向后表演,然后迈出一步,以便您将要训练鉴别器,从而,然后迈出一步,以便您将要训练鉴别器,从而。
他们可以分辨出怪物第一部分和第二部分的割伤,然后我们喂,他们可以分辨出怪物第一部分和第二部分的割伤,然后我们喂,在这种情况下,我们仍然有怪物,在这种情况下,我们拥有渐变,在这种情况下,我们仍然有怪物。
在这种情况下,我们拥有渐变,剪掉渐变注意这一部分,我们剪掉渐变,剪掉渐变注意这一部分,我们剪掉渐变,因此,在这种情况下,梯度不会沿发生器下降,实际上我们输入了假,因此,在这种情况下。
梯度不会沿发生器下降,实际上我们输入了假,数据里面的怪物看图像,数据里面的怪物看图像,鉴别者鉴别者说所有的怪物,但在这种情况下,我们,鉴别者鉴别者说所有的怪物,但在这种情况下,我们,说不。
这些都是可爱的剪裁图片,所以现在我们训练,说不,这些都是可爱的剪裁图片,所以现在我们训练,向后执行计算相对于,向后执行计算相对于,一切,然后我们踩发电机,使那些怪物,一切,然后我们踩发电机,使那些怪物。
发电机正在使它们看起来更可爱,发电机正在使它们看起来更可爱,我可以比这更可爱,抱歉为什么我们不发送假货的渐变,我可以比这更可爱,抱歉为什么我们不发送假货的渐变,数据传递给鉴别器。
我们在第二种情况下是正确的,所以让我回答,数据传递给鉴别器,我们在第二种情况下是正确的,所以让我回答,所以在这种情况下,我们在发送梯度时发送梯度,所以在这种情况下,我们在发送梯度时发送梯度。
向后但回到您知道的发电机上,我们实际上交换了,向后但回到您知道的发电机上,我们实际上交换了,正确的标签与您知道不正确的标签,在这种情况下,我们输入,正确的标签与您知道不正确的标签,在这种情况下。
我们输入,抽取器中的怪物说这些是怪物,我们说哦,这些是,抽取器中的怪物说这些是怪物,我们说哦,这些是,好看的削减,然后我们训练发电机,使这些怪物会,好看的削减,然后我们训练发电机,使这些怪物会。
看起来更漂亮,但您不想发送,看起来更漂亮,但您不想发送,通过渐变,因为在这种情况下,您尝试最小化正确的,通过渐变,因为在这种情况下,您尝试最小化正确的,分类部分正确,所以如果您向后发送渐变,您会。
分类部分正确,所以如果您向后发送渐变,您会,基本上会获得性能较差的生成器,因为您不想,基本上会获得性能较差的生成器,因为您不想,要最小化此标准,您要正确地最大化此标准,这是,要最小化此标准。
您要正确地最大化此标准,这是,为什么在第一种情况下我们没有渐变,但是在,为什么在第一种情况下我们没有渐变,但是在,这种情况是因为我们绝对想计算相对于,这种情况是因为我们绝对想计算相对于。
这个准则的产生者是VC损失和S形的组合,因为,这个准则的产生者是VC损失和S形的组合,因为,我的意思是这是一个问题,因为下溢使dbca出现问题,我的意思是这是一个问题,因为下溢使dbca出现问题。
这里的事情是概率概率方法,所以这,这里的事情是概率概率方法,所以这,如果您对这个网络进行了很好的训练,则该乙状结肠会给您,如果您对这个网络进行了很好的训练,则该乙状结肠会给您,零梯度,因为如果饱和。
您就会知道,零梯度,因为如果饱和,您就会知道,如果您不在,如果您不在中间,则您处于两个位置,如果您不在,如果您不在中间,则您处于两个位置,从决策边界开始,您将基本上拥有一个或一个,所以它仍然。
从决策边界开始,您将基本上拥有一个或一个,所以它仍然,将会有0个渐变,总是会变成另一边,这里全都是0,但是,将会有0个渐变,总是会变成另一边,这里全都是0,但是,没有坡度,所以如果您在这里。
您将不知道如何去哪里,没有坡度,所以如果您在这里,您将不知道如何去哪里,下山吧,因为这里没有像,下山吧,因为这里没有像,拍手哦,这是第一个问题,第二个问题是,如果您想,拍手哦,这是第一个问题。
第二个问题是,如果您想,真的有非常垂直的边缘,例如非常垂直的边缘,真的有非常垂直的边缘,例如非常垂直的边缘,非常非常非常大的重量好吧,如果你知道他们有,非常非常非常大的重量好吧,如果你知道他们有。
重量越大,乙状结肠内部的最终值越大,重量越大,乙状结肠内部的最终值越大,如果你想变得像饱和的西格玛,你会喜欢,如果你想变得像饱和的西格玛,你会喜欢,很大的重量导致该模块,而这个模块创建了um。
您知道它将,很大的重量导致该模块,而这个模块创建了um,您知道它将,使您的体重和所有种类的爆炸,这就是为什么人们想要,使您的体重和所有种类的爆炸,这就是为什么人们想要,做几件事。
比如他们想限制重量的范数,那么您,做几件事,比如他们想限制重量的范数,那么您,想限制梯度的范数,有很多修补方法,想限制梯度的范数,有很多修补方法,这种架构,但这是正确的调度,我们不想修补我们想要的。
这种架构,但这是正确的调度,我们不想修补我们想要的,要知道什么是合适的,什么是合适的,基本上是,要知道什么是合适的,什么是合适的,基本上是,例如用于最终成本网络的编码器,因此,如果您考虑。
例如用于最终成本网络的编码器,因此,如果您考虑,音符编码器的重构误差汽车的重构时代,音符编码器的重构误差汽车的重构时代,如果您提供的数据来自于,如果您提供的数据来自于,培训分布(如果提供符号)。
它与培训无关,培训分布(如果提供符号),它与培训无关,分配以记住最后一次的歧管,然后是自动编码器,分配以记住最后一次的歧管,然后是自动编码器,重建工作会很差,因此重建错误,重建工作会很差,因此重建错误。
会比较大,所以您可以使用out来代替辨别器,会比较大,所以您可以使用out来代替辨别器,编码器重建错误如何从本课程中获得更多收益。
编码器重建错误如何从本课程中获得更多收益,总的来说,让我给您一些建议,首先理解,总的来说,让我给您一些建议,首先理解,就像将问题移到下面的部分一样,仍然不清楚,就像将问题移到下面的部分一样,仍然不清楚。
视频我会回答每个问题,以便您最终得到答案,视频我会回答每个问题,以便您最终得到答案,如果您愿意,我会从以下方面获得更多有关该领域的新闻:如果您愿意,我会从以下方面获得更多有关该领域的新闻:
教育内容和我觉得有趣的事情,您可以在Twitter上关注,教育内容和我觉得有趣的事情,您可以在Twitter上关注,在那里,您有我的手柄,我已经看到您想进行更新,在那里,您有我的手柄。
我已经看到您想进行更新,关于新视频,别忘了订阅频道并激活,关于新视频,别忘了订阅频道并激活,如果您确实喜欢这部影片,请注意通知铃,如果您确实喜欢这部影片,请注意通知铃,竖起大拇指也有助于推荐这部影片。
竖起大拇指也有助于推荐这部影片,如果您想搜索本课的内容,请与我们联系,如果您想搜索本课的内容,请与我们联系,与该视频直接相关的英语转录,因此每个标题,与该视频直接相关的英语转录,因此每个标题。
如果您单击标题,则转录是可单击的,如果您单击标题,则转录是可单击的,导演以相同方式将视频中的正确位置,导演以相同方式将视频中的正确位置,该视频的标题与转录的标题相同,因此您可以返回。
该视频的标题与转录的标题相同,因此您可以返回,第四,也许英语不是您的第一语言,但Italiano habla espanol nous,第四,也许英语不是您的第一语言。
但Italiano habla espanol nous,oppidum逗号说韩语,不知道怎么说韩语,我们有几个,oppidum逗号说韩语,不知道怎么说韩语,我们有几个。
该材料的翻译版本在网站上存在奇数,因此我们也是,该材料的翻译版本在网站上存在奇数,因此我们也是,寻找更多翻译,如果您也能帮助的话,寻找更多翻译,如果您也能帮助的话,您实际上尝试做一些练习,然后玩。
您实际上尝试做一些练习,然后玩,笔记本和我们提供的用于内部化和,笔记本和我们提供的用于内部化和,更好地理解我们在课程中解释的概念,更好地理解我们在课程中解释的概念,这确实给了您展示自己贡献的机会。
这确实给了您展示自己贡献的机会,例如,您在文章中发现了一些错别字,因此在,例如,您在文章中发现了一些错别字,因此在,笔记本,您可以修复这些笔记本,并且知道如何通过发送,笔记本,您可以修复这些笔记本。
并且知道如何通过发送,给我一个关于github的请求,或者让我知道否则,就是这样,给我一个关于github的请求,或者让我知道否则,就是这样。