软件设计师之数据结构中的查找与排序深度解析
在软件开发的知识体系里,数据结构与算法犹如基石,支撑着各种复杂程序的构建。今天,咱们一起深入学习查找和排序相关的知识,期望能和大家共同进步,提升对数据处理的理解和实践能力。
哈希表
哈希表基础概念
哈希表是一种独特的查找表,它通过哈希函数将关键字映射到存储地址,从而实现快速查找。想象一下,你有一个装满盒子的仓库,每个盒子都有一个编号(哈希地址),通过某种规则(哈希函数),你能快速知道某个物品(关键字对应的数据)应该放在哪个盒子里,查找时也能迅速定位。
但在实际情况中,不同关键字可能会映射到同一个哈希地址,这就是冲突。就好比两个物品被安排在了同一个盒子里,这时候就需要处理冲突,让每个物品都能合理存放。对于哈希表,构造合适的哈希函数和解决冲突是关键。
哈希函数构造方法
常用的哈希函数构造方法有多种。直接定址法就像给每个关键字分配一个固定的“座位”,简单直接;数字分析法是分析关键字的数字特征来确定哈希地址;平方取中法通过对关键字平方后的中间几位来获取哈希地址;折叠法是将关键字分割后进行折叠计算;随机数法利用随机数生成哈希地址;除留余数法是用关键字除以一个数取余数作为哈希地址,这种方法简单且常用 。
在构造哈希函数时,要追求较大的压缩性以节省空间,同时要具备良好的散列性,减少冲突。比如,设计一个哈希函数时,要充分利用关键字的各个部分,让关键字能均匀地分布在哈希表中,避免出现大量关键字集中在某几个地址的情况。
处理冲突的方法
- 开放定址法:开放定址法是当冲突发生时,在哈希表中寻找下一个空闲位置。它的公式是[H_{i}=\left(H( key )+d_{i}\right) % m i=1,2, \cdots, k(k \leq m-1)] ,其中 (H( key )) 是哈希函数,m是哈希表表长, (d_{i}) 是增量序列。常见的增量序列有线性探测再散列( (d_{i}=1,2,3, \cdots, m-1) )、二次探测再散列( (d_{i}=1{2},-1{2}, 2{2},-2{2}, 3^{2}, \cdots, \pm k^{2}(k ≤\frac{m}{2})) )和随机探测再散列( (d_{i}) 是伪随机数序列)。
线性探测再散列是最简单的,就像在一排座位中,一个人发现自己的座位被占了,就按顺序找下一个空座位。但它容易出现聚集现象,导致查找效率降低。比如,某哈希表表长为10,哈希函数为 (Hash(key)=key mod 10) ,关键字序列为[12, 22, 32] ,12的哈希地址是2,22的哈希地址也是2,发生冲突后,22只能往后找空位置,32同理,这样就会使这几个关键字在相邻位置聚集,增加查找时间 。