信奥一本通1314:【例3.6】过河卒(Noip2002)

这是一篇关于解决棋盘上卒从A点到B点路径计数问题的博客,利用递推算法而非搜索。题目中卒只能向下或向右移动,而马的控制点不可穿越。输入为棋盘大小和马的位置,输出为到达B点的路径数。博主通过建立二维数组存储棋盘信息,并用递推方法计算路径,最终输出路径总数。

棋盘上A点有一个过河卒,需要走到目标B点。卒行走的规则:可以向下、或者向右。同时在棋盘上的某一点有一个对方的马(如C点),该马所在的点和所有跳跃一步可达的点称为对方马的控制点,如图3-1中的C点和P1,……,P8,卒不能通过对方马的控制点。棋盘用坐标表示,A点(0,0)、B点(n, m) (n,m为不超过20的整数),同样马的位置坐标是需要给出的,C≠A且C≠B。现在要求你计算出卒从A点能够到达B点的路径的条数。

【输入】

给出n、m和C点的坐标。

【输出】

从A点能够到达B点的路径的条数。

【输入样例】

8 6 0 4

【输出样例】

1617

这道题一眼看过去想到的是用搜索来做,深搜或者广搜来找路径到达B点,然后记下此路径反复的搜索就可以计算出路径的条数。但是这题放在了“递推”的模块里,还是要用递推的方法去做。

我首先是用一个数组将棋盘的信息存下来,然后打表用来后面判断棋子能走的方向和马能控制到的地方。将棋盘的信息完善之后就可以循环递推求路径的条数啦。

AC源码

#include <bits/stdc++.h>
using namespace std;
int n,m,x,y;
int a[25][25];
int next1[4][2]={{0,1},{1,0},{0,-1},{-1,0}};
int next2[8][2]={{-2,-1},{-1,-2},{1,-2},{2,-1},{2,1},{1,2},{-1,2},{-2,1}};
long long f[25][25];
int main()
{
	cin>>n>>m>>x>>y;
	a[x][y] = 1;
	for(int i=0;i<8;i++){
		int tx = x+next2[i][0];
		int ty = y+next2[i][1];
		if(tx>=0&&tx<=n&&ty>=0&&ty<=m){
			a[tx][ty] = 1;
		}
	}
	f[0][0] = 1;
	for(int i=0;i<=n;i++){
		for(int j=0;j<=m;j++){
			for(int k=0;k<4;k++){
				int tx = i+next1[k][0];
				int ty = j+next1[k][1];
				if(tx>=0&&tx<=n&&ty>=0&&ty<=m){
					if(a[tx][ty]==0){
						f[i][j] = f[i][j]+f[tx][ty];
					}
				}
		    }
		}
	}
	printf("%lld",f[n][m]);
	return 0;
}

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

枳实、

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值