spring-kafka多线程顺序消费
业务场景
我们公司是做共享充电宝的业务的。有一些比较大的代理商或者ka商户,他们需要了解到他们自己下面的商户的订单数据,这些订单数据需要由我们推送给他们。
大致架构为数据部门通过canal订阅订单表的数据,然后推送到kafka ,我们订阅数据部门kafka获取到代理商下商户的实时订单数据再推送给代理商。比如,代理商下商户产生了一笔订单,整个过程会产生,订单生成,订单已支付,充电宝已被取走,充电宝已归还等多种状态的订单消息,我们需要实时把这些订单消息推送给代理商。我们的业务场景需要消息的顺序推送和多线程并发消费以提高性能
kafka多线程消费方案
- 消费者程序启动多个线程,每个线程维护专属的KafkaConsumer实例,负责完整的消息获取、消息处理
流程。如下图所示:

- 消费者程序使用单或多线程获取消息,同时创建多个消费线程执行消息处理逻辑。获取消息的线程可以 是一个,也可以是多个,每个线程维护专属的KafkaConsumer实例,处理消息则交由特定的线程池来 做,从而实现消息获取与消息处理的真正解耦。具体架构如下图所示:

这两种方案孰优孰劣呢?应该说是各有千秋。这两种方案的优缺点,我们先来看看下面这张表格。

kafka怎么保证顺序消费
保证顺序消费,需要满足如下条件
- 保证相同订单编号的消息需要发送到同一个分区。
@Configuration
public class SenderConfig {
@Value("${kafka.bootstrap-servers}")
private String bootstrapServers;
@Bean
public Map<String, Object> producerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
return props;
}
@Bean
public ProducerFactory<String, String> producerFactory() {
return new DefaultKafkaProducerFactory<>(producerConfigs());
}
@Bean
public KafkaTemplate<String, String> kafkaTemplate() {
return new KafkaTemplate<>(producerFactory());
}
@Bean
public Sender sender() {
return new Sender();
}
}
public class Sender {
@Autowired
private KafkaTemplate<String, String> kafkaTemplate;
public void send(String topic, String data) {
kafkaTemplate.send(topic, data);
}
public void send(String topic, int partition, String data) {
kafkaTemplate.send(topic, partition, data);
}
}
@RunWith(SpringRunner.class)
@SpringBootTest
public class SpringKafkaApplicationTest {
private static String BATCH_TOPIC = "batch.t";
private static Integer PARTITIONS = 6;
/**
* 已支付
*/
private static Integer PAYED_STATUS = 2;
/**
* 已取走
*/
private static Integer SEND_BACK_STATUS = 3;
@Autowired
private Sender sender;
private static DelayQueue delayQueue = new DelayQueue();
@Test
public void testReceive() throws Exception {
for (int i = 1; i < 50; i++) {
Integer orderNum = 800010 + i;
Integer orderPrice = RandomUtil.randomInt(1, 20);
// 用户支付成功,订单状态为支付成功
OrderDTO order = new OrderDTO(orderNum, orderPrice, PAYED_STATUS);
// 发送支付成功订单消息到对应的kafka分区
Integer destinationPartition = orderNum % PARTITIONS;
sender.send(BATCH_TOPIC, destinationPartition, JSONUtil.toJsonStr(order));
// 创建任务放入延迟队列(模拟用户支付成功到取走充电宝花费的时间)
long delayTime = 200;
OrderTask orderTask = new OrderTask(delayTime, order);
delayQueue.offer(orderTask);
}
while (true) {
// 用户取走充电宝,订单状态更改为 已取走
OrderTask orderTask = (OrderTask) delayQueue.take();
OrderDTO orderDTO = orderTask.getOrderDTO();
Integer destinationPartition = orderDTO.getOrderNum() % PARTITIONS;
orderDTO.setOrderStatus(SEND_BACK_STATUS);
// 发送已取走订单消息到对应的kafka 分区
sender.send(BATCH_TOPIC, destinationPartition, JSONUtil.toJsonStr(orderDTO));
}
}
}
可以看出我们通过订单号对分区数进行取余,来确定该消息发送到哪一个分区,保证相同订单号的消息被发送到相同的分区。当然也可以对字符串这些进行hash ,获得hash值来对分区数取余
Integer destinationPartition=orderDTO.getOrderNum()%PARTITIONS;
- 保证同一个分区的消息由同一个线程来消费。
我们的业务场景需要采用多线程方案一来处理我们的业务
普通方式实现方案一
public class KafkaConsumerRunner implements Runnable {
private final AtomicBoolean closed = new AtomicBoolean(false);
private final KafkaConsumer consumer;
public KafkaConsumerRunner(KafkaConsumer consumer) {
this.consumer = consumer;
}
@Override
public void run() {
try {
consumer.subscribe(Arrays.asList("topic"));
while (!closed.get()) {
// 执行消息处理逻辑
ConsumerRecords records = consumer.poll(10000);
}
} catch (Exception e) {
// Ignore exception if closing
if (!closed.get()) {
throw e;
}
} finally {
consumer.close();
}
}
/**
* Shutdown hook which can be called from a separate thread
*/
public void shutdown() {
closed.set(true);
consumer.wakeup();
}
}
spring-kafka为我们做的封装
消费者相关配置:
这里我们需要注意的是factory.setConcurrency(4)。
这个是配置主要是设置KafkaConsumer的数量,最大为topic 的分区数。当然你如果设置的值超过topic 分区数,spring-kafka 还是只会为我们创建最大分区数的KafkaConsumer数量,也就是创建KafkaConsumer数量能少于分区数,但不会超过分区数。少于分区数的话,一个KafkaConsumer会消费多个分区的数据,保证所有的分区数据都有对应的KafkaConsumer来进行消费;但不会出现多个KafkaConsumer消费同一个分区的情况,因为如果是这样也就无法保证消息的顺序消费机制。
一般情况下如果数据量较大,我们需要把此值设置为topic分区数,这样一个KafkaConsumer消费一个分区的数据,提高数据的并发消费能力。
@Configuration
@EnableKafka
public class ReceiverConfig {
@Value("${kafka.bootstrap-servers}")
private String bootstrapServers;
@Bean
public Map<String, Object> consumerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
props.put(ConsumerConfig.GROUP_ID_CONFIG, "batch");
// maximum records per poll
props.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, "100");
return props;
}
@Bean
public ConsumerFactory<String, String> consumerFactory() {
return new DefaultKafkaConsumerFactory<>(consumerConfigs());
}
@Bean(name = "kafkaListenerContainerFactory")
public ConcurrentKafkaListenerContainerFactory<String, String> kafkaListenerContainerFactory() {
ConcurrentKafkaListenerContainerFactory<String, String> factory =
new ConcurrentKafkaListenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
// enable batch listening
factory.setBatchListener(true);
factory.setConcurrency(4);
return factory;
}
@Bean
public Receiver receiver() {
return new Receiver();
}
}
Receiver 代码
public class Receiver {
@Autowired
private PushOrderService pushOrderService;
private static final Logger LOGGER = LoggerFactory.getLogger(Receiver.class);
private static final String BATCH_TOPIC = "batch.t";
@KafkaListener(topics = BATCH_TOPIC, containerFactory = "kafkaListenerContainerFactory")
public void receivePartitions(List<String> data,
@Header(KafkaHeaders.RECEIVED_PARTITION_ID) List<Integer> partitions,
@Header(KafkaHeaders.OFFSET) List<Long> offsets
本文介绍了一个共享充电宝业务中,利用Spring-Kafka实现kafka消息的多线程顺序消费的需求。通过订单号对分区数取余确保消息发送到相同分区,并保证每个分区由同一线程消费,以此实现顺序性和并发性能的平衡。
最低0.47元/天 解锁文章
292

被折叠的 条评论
为什么被折叠?



