机器学习与智能优化 之 学习也民主

要点 拥有一些不同的准确率相似的模型让你能够做一些独立使用这些模型之外的提升性能的方法(合作法,议会,机器学习内的民主)。 在堆叠或混合方法中,这些系统由在独立模型输出上添加一层组合而来。 创造多样性有不同 的方法策略。在bagging(bootstrap aggregation)中,对同一...

2015-01-31 09:48:40

阅读数:483

评论数:0

机器学习与智能优化 之 统计学习理论和支持向量机

要点 统计学习理论(SLT)表明了条件因而在样例学习上是成功的,也就是说,这些训练数据中的正样本对在相同概率分布下的新样本有有效的泛化能力。一致的分布是重要的:一个优秀的人类老师从来不会用一些样本来训练学生,而用完全不同的例子来测试。换句话说,样本需要反映问题。学习能力的状况指的是假设空间(我们...

2015-01-31 07:38:39

阅读数:649

评论数:0

机器学习与智能优化 之 浅层和深层神经网络

要点 基于“实物”来创造人工智能一直是人工神经网络研究的问题。多层感知器神经网络(MLPs)是由仅在邻接层前向内连的sigmoid单元组成的自由(无参)模型结构。一个识别你姥姥出现在一张照片上的概率的单元在我们大脑中的硬件结构(别吃惊)就是一个MLP网络。梯度下降法的变种是训练标注样本的有效手段...

2015-01-30 22:53:57

阅读数:1952

评论数:0

机器学习与智能优化 之 几个特殊非线性模型

要点 线性模型应用很广泛,但在某些场合也有不足。本章举了三个优化的例子。 第一,要求输出是在一个限定范围的可能值中是有原因的。例如,如果要预测一个概率,那么输出就需要介于0和1之间。把一个线性组合用logistc函数来压缩是一个方法。当训练事件的对数似然最大化时,就获得了广泛使用的logist...

2015-01-30 14:48:13

阅读数:980

评论数:0

train_cascade 源码阅读系列

train_cascade 特征提取 train_cascade 源码阅读之LBP特征  train_cascade 源码阅读之Haar特征 train _cascade 源码阅读之HOG特征 cascade   OpenCV 决...

2015-01-30 08:25:56

阅读数:392

评论数:0

机器学习与智能优化 之 排序与选择特征

要点 减少一个模型使用的输入特征同时保持性能大体一致有诸多好处:模型尺寸更小、便于人类理解、训练和运行速度更快、可能更高的泛化能力。 在不考虑特定模型方法和它们之间关系的情况下很难对独立的特征进行排序。想想一个侦探(这相当与是一个“有罪”和“清白”的分类器)只有智能地综合众多线索,排除令人迷惑...

2015-01-29 17:59:12

阅读数:1134

评论数:0

OpenCV 随机森林使用方法

不谈原理,直接暴力地给出代码。由OpenCV sample的c代码改写。包含读取数据/训练/获得每个特征的重要性/计算样本相似度等操作。 #include "opencv2/core/core_c.h" #include "opencv2/ml/ml.hpp&quo...

2015-01-29 14:48:56

阅读数:1657

评论数:0

机器学习与智能优化 之 规则、决策树和森林

要点 简单的“如果-那么”规则来提炼信息是人类能够理解的一种方式。一个简单的避免可能的矛盾条件而导致的混乱的方法是用一个问题层级(最具信息量的放前面)来组织一系列问题结构,也就是决策树。 树可以通过贪心和递归方法学习,从完整的数据集开始,尝试寻找一个划分使得两个子集尽可能地纯净,然后在子集上重...

2015-01-29 10:23:51

阅读数:1409

评论数:0

机器学习与智能计算 之 最小二乘法

要点 多项式拟合是利用线性模型来解决非线性问题的有效方法。模型由一个线性的系数(待求)与原始输入变量的乘积和组成。用任意函数替代乘积中的变量也适用,只要这个函数是确定的(函数中没有自由参数,只有系数相乘)。优化的系数由最小化误差平方和来决定,因此需要解一组线性方程。如果输入-输出的样本数没有系数...

2015-01-28 19:25:45

阅读数:645

评论数:0

机器学习与智能优化 之 线性模型

要点 针对回归(一个输入输出对集合的线性估计),传统线性模型用最小化线性模型预测值与训练样本间的平方误差和来作为实验数据的最可能的线性拟合。最小化可以“一蹴而就”,利用线性代数来生成矩阵的逆;或者迭代地,渐进优化模型参数来降低误差。求伪逆可能是拟合实验数据用得最多的技术。 在分类中,线性模型的...

2015-01-28 07:51:32

阅读数:853

评论数:0

机器学习与智能优化 之 学习有道

要点 机器学习的目标是用一组训练样例去实现一个系统,它对训练过程未见且环境相同的新样本同样有效。 机器学习学习的是通过自动最小化训练集误差的方法为不定模型的自由变量确定一组合适的值。可能通过修改来防止模型过于复杂以期提高正确泛化的机会。 系统的输出值可以是一个类别(分类)也可以是一个值(回归...

2015-01-27 08:11:44

阅读数:779

评论数:0

OpenCV KNN 之 使用方法

OpenCV 中KNN构造函数如下。 C++: CvKNearest::CvKNearest() C++: CvKNearest::CvKNearest(const Mat& trainData, const Mat& responses, const Mat& sam...

2015-01-26 11:55:21

阅读数:5206

评论数:0

机器学习与智能优化 之 KNN

要点 KNN(最近邻)是原始且懒惰的机器学习形式:仅仅将所有训练数据存储下来。 当有新的待估计点输入时,搜寻得到存储数据中阈值最接近的K个数据点。用它们的多数的类别或者均值作为输出。简单的训练方式导致了搜寻大量数据时的漫长的响应等待。 KNN在很多实际应用中是有效的。因为输入简单通常输出也简...

2015-01-26 10:03:16

阅读数:1328

评论数:0

train_cascade 源码阅读之级联训练

在主函数中,最耀眼的一句话就是这个了: classifier.train( cascadeDirName, vecName, bgName, numPos,...

2015-01-23 09:26:47

阅读数:1505

评论数:1

OpenCV 决策树 之 使用方法

先看OpenCV中与决策树有关的结构。 CvDTreeSplit 表示树节点的一个可能分割。 CvDTreeNode 表示决策树中的一个节点。 CvDTreeParams 包含了训练决策树的所有参数。 CvDTreeTrainData 决策树的训练数据,为树全体共享。 CvD...

2015-01-21 20:03:17

阅读数:2985

评论数:0

OpenCV 决策树 之 理论准备

OpenCV中的CvDTree类实现了单一的决策树,可以作为基类用在Boosting 和 Random Trees中。

2015-01-21 10:02:34

阅读数:1217

评论数:1

train _cascade 源码阅读之HOG特征

本文讨论OpenCV  train_cascade 级联分类器中的HOG特征实现。特征的初始化框架和LBP 特征是一致的,感兴趣可以参考 train_cascade 源码阅读之LBP 特征中的介绍。 HOG,即Histogram of Gradient 方向梯度直方图,常用于解决人体目标的检测...

2015-01-20 11:30:04

阅读数:1163

评论数:0

train_cascade 源码阅读之Haar特征

train_cascade中对Haar特征的处理与LBP特征类似,调用方法也相近,都是作为CvFeatureEvaluator的子类,框架性的东西都是一致的,具体调用过程可以参考 train_cascade 源码阅读之LBP feature ,下面主要讨论的是Haar特征的实现。 下面片段是生成...

2015-01-19 21:43:04

阅读数:1015

评论数:2

train_cascade 源码阅读之LBP特征

本文以LBP特征为例,介绍了OpenCV中train_cascade数据初始化的过程。 1 在CvCascadeBoost中,创建了CvCascadeBoostTrainData对象。 bool CvCascadeBoost:: train( const CvFeatureEv...

2015-01-19 18:14:14

阅读数:1411

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭