排序:
默认
按更新时间
按访问量

OpenCV 3.0 程序编译链接错误

问题描述error: main.o: undefined reference to symbol ‘_ZN2cv6imreadERKNS_6StringEi’ /usr/local/OpenCV/Release/lib/libopencv_imgcodecs.so.3.0:-1: error: ...

2015-05-15 10:41:50

阅读数:7709

评论数:6

编译器的选择(x86_amd64, amd64等的区别)

结论 32/64 位系统编译在32位系统上运行 => x86 32 系统上编译64位系统上运行 => x86_amd64 64 系统上编译在64位系统上运行 => amd64 解释注:以下引自MSDN The following list describes the vario...

2016-10-31 17:29:47

阅读数:6853

评论数:0

Windows下faster-rcnn编译

Windows下faster-rcnn的编译可以分为2个部分,caffe的编译和faster-rcnn的编译。由于原始的版本大多基于linux,感谢各位前辈的移植与分享,现在windows版本的在网上都可以找到。但对于初学者可能还是有一些坑要填。以下是我遇到的一些问题和解决方法,用以存档。Caff...

2016-09-22 17:07:29

阅读数:5280

评论数:12

OpenCV KNN 之 使用方法

OpenCV 中KNN构造函数如下。 C++: CvKNearest::CvKNearest() C++: CvKNearest::CvKNearest(const Mat& trainData, const Mat& responses, const Mat& sam...

2015-01-26 11:55:21

阅读数:5211

评论数:0

Linux下查看程序内存占用

1使用ps命令查看内存是不准确的,因为其返回的是一个进程所用的所有空间,而由于linux的共享内存机制,一个资源可能并非一个程序所独占。[详见] 结果显示中常出现的RSS和VSZ的区别。 - RSS:Resident Set Size 进程在RAM中占用的空间,不包括swap中的部分,包含共享...

2017-01-15 22:30:31

阅读数:5208

评论数:0

C# 语音播报

添加引用COM中添加Microsoft Speech Object Library添加控件在代码中添加 using SpeechLib;简单代码实现SpeechVoiceSpeakFlags flag= SpeechVoiceSpeakFlags.SVSFlagsAsync; SpVoice vo...

2016-12-07 19:38:43

阅读数:4447

评论数:0

H2O with R 简明使用手记·上篇

阅读官方booklet和API了解到的一些东西随手记了下来,以为备忘,遂成此小文。概述 H2O 是一款针对智能应用的机器学习和深度学习的开源程序集。PayPal/思科/Nielsen等等也是其使用者。

2016-04-03 01:21:05

阅读数:4386

评论数:0

Shape Context 形状上下文特征

形状上下文也是一种有效的匹配特征。原理 使用边缘检测算子提取图像边缘,得到图像边缘信息。 所谓形状的上下文,指的就是像素点邻域内的其他像素点的分布情况。通常我们得到的边缘并不会代表曲率的极大值或者拐点。我们假设轮廓是分段平滑的,可以从轮廓中选取充分的n个点来作为这个潜在连续形状的估计。n的大小决定...

2016-04-06 17:10:04

阅读数:4340

评论数:0

NVidia TensorRT 运行 Caffe 模型

前面的话NVidia发布了TensorRT,支持fp16,可以在TX1和Pascal架构的显卡,如gtx1080上运行半精度。官方说法是TensorRT对inference的加速很明显,往往可以有一倍的性能提升。而且还支持使用caffe的模型。 但不足的是还不支持自定义层,只有常用的一些层可以选...

2016-11-21 12:07:59

阅读数:3542

评论数:0

OpenCV 决策树 之 使用方法

先看OpenCV中与决策树有关的结构。 CvDTreeSplit 表示树节点的一个可能分割。 CvDTreeNode 表示决策树中的一个节点。 CvDTreeParams 包含了训练决策树的所有参数。 CvDTreeTrainData 决策树的训练数据,为树全体共享。 CvD...

2015-01-21 20:03:17

阅读数:2986

评论数:0

H2O with R 简明使用手记·下篇

上篇链接 R中的数据操作 导入数据 myPath = "/my/file/path/" mydata.hex = h2o.importFile(path = myPath, destination_frame = "mydata.hex") .h...

2016-04-03 10:10:16

阅读数:2607

评论数:0

卷积神经网络的感受野与尺寸推导

对于卷积层和池化层,有如下推导式。感受野记第ii层的kernel/stride/pad为 ki,si,pik_i,s_i,p_i ,感受野为rir_i. ri=si(ri+1−1)+kir_i=s_i(r_{i+1}-1)+k_i尺寸记第ii层的kernel/stride/pad为 ki,si,...

2016-10-14 11:49:30

阅读数:2453

评论数:0

ARM编译遇到"thumb conditional instruction should be in IT block"问题

问题描述在TK1上编译C++程序,遇到如下问题。 Error: thumb conditional instruction should be in IT block -- `strexeq r1,r2,[r4]'解决方法在CMAKE配置中的参数CMAKE_CXX_FLAGS_RELEASE 后...

2017-01-14 16:47:33

阅读数:2045

评论数:0

机器学习与智能优化 之 浅层和深层神经网络

要点 基于“实物”来创造人工智能一直是人工神经网络研究的问题。多层感知器神经网络(MLPs)是由仅在邻接层前向内连的sigmoid单元组成的自由(无参)模型结构。一个识别你姥姥出现在一张照片上的概率的单元在我们大脑中的硬件结构(别吃惊)就是一个MLP网络。梯度下降法的变种是训练标注样本的有效手段...

2015-01-30 22:53:57

阅读数:1952

评论数:0

HOG特征原理梳理与实验分析

重读了HOG特征的论文,比起SIFT特征这种磨人小妖级别的特征,HOG还是naive. 但HOG特征的使用效果使得其在目前的应用中热度不减。讨论其设计思路是有意思的事情。本文试图从算法的步骤上分析算法设计的意义。但这毕竟是个人观点,各位自己也要判断,要是各位看官阅后理解出现了偏差,乃们自己也有责任。

2016-04-13 03:08:05

阅读数:1767

评论数:0

Caffe编译问题之InstallFailureSignalHandler

在windows下编译Caffe一直是一件很烦人的事,然而各路大牛的算法往往又是建立在自己的维护版本之上,所以只好硬着头皮编译。问题描述错误提示 common.obj : error LNK2019: unresolved external symbol “__declspec(dllimpo...

2016-12-25 11:17:14

阅读数:1700

评论数:0

OpenCV 随机森林使用方法

不谈原理,直接暴力地给出代码。由OpenCV sample的c代码改写。包含读取数据/训练/获得每个特征的重要性/计算样本相似度等操作。 #include "opencv2/core/core_c.h" #include "opencv2/ml/ml.hpp&quo...

2015-01-29 14:48:56

阅读数:1660

评论数:0

Qt qextserialport类 发送数据大于127 发生错误既最高位置零的问题

近日项目使用Qt用到串口,使用了第三方库qextserialport,开始进行一切顺利,后来调试时出现问题,发送串口数据时,大于127的数接收会发生错误。 例如:发送0xe1,接收到的却是0x61,接收值和发送值之间正好相差了127.发送的方法是按照第三方库例程里的方式使用了QByteArray。...

2013-10-07 20:59:18

阅读数:1546

评论数:0

cv::waitkey()仅对OpenCV窗口有效

近日编程时,调用了OpenCV库,想着其中有waitkey 作延时之用,反复调试数日无果。 却发现,cv::waitkey()仅对OpenCV窗口有效!%>_

2013-07-20 16:51:25

阅读数:1542

评论数:0

train_cascade 源码阅读之级联训练

在主函数中,最耀眼的一句话就是这个了: classifier.train( cascadeDirName, vecName, bgName, numPos,...

2015-01-23 09:26:47

阅读数:1505

评论数:1

提示
确定要删除当前文章?
取消 删除
关闭
关闭