CASE:1
2022.05.02,开始在洛谷上”做做“简单的dp,看到一题:

之前看到过更简单一点的,只要走一次,求路径的最大值之和。而这题要走两次,且走过的话就要把数字归为零,一开始想dp两次行不行,但是直觉告诉我不行。后来在题解里看到一种我比较容易看懂的方法:
主要思想就是双线程动规,定义四位数组ans[i][j][k][l],(也就是模拟两个人同时走),最后的ans[n-1][n-1][n-1][n-1](从0开始)就是题目所要的答案。
更正:上面这段刚写完去敲代码,发现输出的数很大,一看是发现自己数组越界了,如果从0开始
max(max(ans[i - 1][j][k - 1][l], ans[i - 1][j][k][l - 1]), max(ans[i][j - 1][k - 1][l], ans[i][j - 1][k][l - 1])) + a[i][j] + a[k][l];
当ijkl等于0时-1就越界导致答案错误,所以应该从1开始,最后ans[n][n][n][n]就是所要答案,而且当ijkl等于零,ans[i][j][k][l]的值也是需要我们初始化为0。(切记dp数组的初始化很重要)
主要代码就这样
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
for (int k = 1; k <= n; k++) {
for (int l = 1; l <= n; l++) {
ans[i][j][k][l] = max(max(ans[i - 1][j][k - 1][l], ans[i - 1][j][k][l - 1]), max(ans[i][j - 1][k - 1][l], ans[i][j - 1][k][l - 1])) + a[i][j] + a[k][l];
if (i == k && j == l)ans[i][j][k][l] -= a[i][j];
}
}
}
}
cout << ans[n][n][n][n] << endl;
CASE:2
2022.05.02,开始在洛谷上”做做“简单的dp,看到一题:

大致就是n*m的矩阵,每次对每行取行首或尾的值,取m次,第i次分值为value*2^i,求总和最大值
一开始有点慌,把整个矩阵看成了一个整体,后来看了题解才知道:
①对每行取值时是不会影响其他行的情况,所以可以把每行看作最优子结构。
②对于每行来说,每次只取行首或行尾,所以可以看作区间dp来做。
主要转移方程就是:
dp[i][j]=max(dp[i+1][j]+a[k]*2^m+i-j,dp[i][j-1]+a[k]*2^m+i-j)
2845

被折叠的 条评论
为什么被折叠?



