KMP算法

概念

相比于暴力解法,kmp算法的主要用途就是用于令模板串能够更快的去匹配主串。

KMP算法相比于暴力解法,要点就在于next数组,能够省去重复匹配的时间。

实现思路

得到next数组的过程:理解完kmp是怎么操作的之后,其实大多数代码就能够理解了。j = ne[ j ],这个过程可能有点难理解。这个过程本质上与模板串去匹配主串里回溯的操作是一样。可以这么理解,但第j + 1个数与i不匹配时,那么就在前j个数中找到最大前后公共缀。假如这里最大前后公共缀为x,那么就会有第i - x个数 到第 i - 1个数与前x个数是相等的。接着判断第x + 1个数与i是否相等。如此循环就行了; (以上都是在对模板串操作)

主串匹配过程:主串匹配过程更好理解,按照kmp匹配的过程就能理解。当主串与模板串不匹配时,那么就让模板串利用next[]数组进行移动,再次匹配,直到j == 0或匹配成功。

代码实现

#include <iostream>
using namespace std;

const int N = 10010, M = 100010;

int n, m;
//p为模板串,s为主串
char p[N], s[M];
int ne[N];//next数组

int main()
{
	cin >> n >> p + 1 >> m >> s + 1;

	//求next的过程
	for (int i = 2, j = 0; i <= n; i++) {
		while (j && p[i] != p[j + 1]) j = ne[j];
		if (p[i] == p[j + 1]) j++;
		ne[i] = j;
	}

	//kmp匹配过程
	for (int i = 1, j = 0; i <= m; i++) { 
		while (j && s[i] != p[j + 1]) j = ne[j];
		if (s[i] == p[j + 1]) j++;
		if (j == n) {
			cout << i - n << endl;
			j = ne[j];//便于接着往下匹配
		}
	}

	return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值