luogu 4917

题目链接

解法

首先观察一下,可以发现对于a,b,正方形的边长是lcm(a,b)。那么买的地板的数量是 ( a ∗ b ) g c d ( a , b ) 2 \frac{(a*b)}{gcd(a,b)^2} gcd(a,b)2(ab)
那么对于一个n的答案就是: a n s = ∏ i = 1 n ∏ j = 1 n i ∗ j g c d ( i , j ) 2 ans=\prod_{i=1}^n \prod_{j=1}^n \frac{i*j}{gcd(i,j)^2} ans=i=1nj=1ngcd(i,j)2ij
因为直接算看起来并不好算,所以考虑分成分子分母两部分分别计算:
分子: ∏ i = 1 n ∏ j = 1 n i ∗ j = ( n ! ) 2 n \prod_{i=1}^n \prod_{j=1}^n i*j=(n!)^{2n} i=1nj=1nij=(n!)2n
主要是分母:
∏ i = 1 n ∏ j = 1 n g c d ( i , j ) 2 \prod_{i=1}^n \prod_{j=1}^n gcd(i,j)^2 i=1nj=1ngcd(i,j)2
现在可以计算 n ∗ n n*n nn的矩阵中每种gcd的个数,然后算出来分母的具体值
直接枚举 g c d ( i , j ) = d gcd(i,j)=d gcd(i,j)=d,然后计算矩阵中有多少个位置的gcd=d,设为cnt(d)
这里需要知道一个矩阵中有多少个位置互质:
∑ i = 1 n ∑ j = 1 n [ g c d ( i , j ) = 1 ] \sum_{i=1}^n\sum_{j=1}^n [gcd(i,j)=1] i=1nj=1n[gcd(i,j)=1]
考虑莫比乌斯反演
= ∑ d = 1 n ∑ i = 1 n / d ∑ j = 1 n / d μ ( d ) =\sum_{d=1}^n\sum_{i=1}^{n/d}\sum_{j=1}^{n/d}\mu(d) =d=1ni=1n/dj=1n/dμ(d)
= ∑ d = 1 n μ ( d ) ∗ ( n / d ) 2 =\sum_{d=1}^n \mu(d)*(n/d)^2 =d=1nμ(d)(n/d)2
设这个式子的值为 S ( d ) S(d) S(d)
这个式子可以整除分块做到 o ( n ) o(\sqrt n) o(n )
然后回头计算每种gcd的个数:
c n t ( d ) = S ( n / d ) cnt(d)=S(n/d) cnt(d)=S(n/d)
计算分母:
∏ d = 1 n d c n t ( d ) ∗ 2 \prod_{d=1}^n d^{cnt(d)*2} d=1ndcnt(d)2
= ∏ d = 1 n d S ( n / d ) ∗ 2 =\prod_{d=1}^n d^{S(n/d)*2} =d=1ndS(n/d)2
然后又可以对S(n/d)整除分块

细节: c n t ( d ) 或 者 S ( n / d ) cnt(d)或者S(n/d) cnt(d)S(n/d)出现在幂的位置,所以对mod-1取模,而不是mod

#include<bits/stdc++.h>
using namespace std;
#define int long long
const int maxn=1e6+5;
const int mod=19260817;
inline int read(){
	char c=getchar();int t=0,f=1;
	while((!isdigit(c))&&(c!=EOF)){if(c=='-')f=-1;c=getchar();}
	while((isdigit(c))&&(c!=EOF)){t=(t<<3)+(t<<1)+(c^48);c=getchar();}
	return t*f;
}
int t,n,s[maxn],rec[maxn];
int mu[maxn],vis[maxn],p[maxn],cnt;
inline int am1(int x){
	if(x<0)return x+mod-1;
	return x>=(mod-1)?x-(mod-1):x;
}
void get(){
	mu[1]=1;
	for(int i=2;i<=1e6;i++){
		if(!vis[i]){
			mu[i]=-1;p[++cnt]=i;
		}
		for(int j=1;j<=cnt&&i*p[j]<=1e6;j++){
			mu[i*p[j]]=-mu[i];vis[i*p[j]]=1;
			if(i%p[j]==0){
				mu[i*p[j]]=0;break;
			}
		}
	}
	for(int i=2;i<=1e6;i++)mu[i]=am1(mu[i]+mu[i-1]);
}
int inv[maxn];
inline int ksm(int a,int b){
	int ans=1;
	while(b){
		if(b&1)ans=ans*a%mod;
		a=a*a%mod;b>>=1;
	}
	return ans;
}
inline int mul(int l,int r){
	return rec[r]*inv[l-1]%mod*rec[r]%mod*inv[l-1]%mod;
}
inline int sum(int x){
	if(s[x])return s[x];
	int r,ans=0;
	for(int l=1;l<=x;l=r+1){
		r=(x/(x/l));
		ans=am1(ans+am1(mu[r]-mu[l-1])*(x/l)%(mod-1)*(x/l)%(mod-1));
	}
	s[x]=ans;
	return ans;
}
signed main(){
	t=read();
	rec[0]=1;inv[0]=1;
	for(int i=1;i<=1e6;i++)rec[i]=rec[i-1]*i%mod;
	inv[1000000]=ksm(rec[1000000],mod-2);
	for(int i=1e6-1;i>=1;i--)inv[i]=inv[i+1]*(i+1)%mod;
	get();
	while(t--){
		n=read();
		int r,ans=1;
		for(int l=1;l<=n;l=r+1){
			r=(n/(n/l));
			ans=1ll*ans*(ksm(mul(l,r),(sum(n/l))%(mod-1))%mod)%mod;
			//printf("%d %d %d %d\n",l,r,mul(l,r),sum(n/l));
		}
		printf("%lld\n",ksm(rec[n],(2*n)%(mod-1))*ksm(ans,mod-2)%mod);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值