遗传算法(转自:http://bbs.csdn.net/topics/360128430)

import java.util.*;

public class Tsp {	
	private String cityName[]={"北京","上海","天津","重庆","哈尔滨","长春","沈阳","呼和浩特","石家庄","太原","济南","郑州","西安","兰州","银川","西宁","乌鲁木齐","合肥","南京","杭州","长沙","南昌","武汉","成都","贵州","福建","台北","广州","海口","南宁","昆明","拉萨","香港","澳门"};
	//private String cityEnd[]=new String[34];
	private int cityNum=cityName.length;				//城市个数
	private int popSize = 50;				//种群数量
	private int maxgens = 20000;			//迭代次数
	private double pxover = 0.8;			//交叉概率
	private double pmultation = 0.05;		//变异概率
	private long[][] distance = new long[cityNum][cityNum];
	private int range = 2000;				//用于判断何时停止的数组区间
	
	private class genotype {
		int city[] = new int[cityNum];		//单个基因的城市序列
		long fitness;						//该基因的适应度
		double selectP;						//选择概率
		double exceptp;						//期望概率
		int isSelected;						//是否被选择
	}
	private genotype[] citys = new genotype[popSize];

	/**
	 * 	构造函数,初始化种群
	 */
	public Tsp() {
		for (int i = 0; i < popSize; i++) {
			citys[i] = new genotype();
			int[] num = new int[cityNum];
			for (int j = 0; j < cityNum; j++)
				num[j] = j;
			int temp = cityNum;
			for (int j = 0; j < cityNum; j++) {
				int r = (int) (Math.random() * temp);
				citys[i].city[j] = num[r];
				num[r] = num[temp - 1];
				temp--;
			}
			citys[i].fitness = 0;
			citys[i].selectP = 0;
			citys[i].exceptp = 0;
			citys[i].isSelected = 0;
		}
		initDistance();
	}
	
	/**
	 *  计算每个种群每个基因个体的适应度,选择概率,期望概率,和是否被选择。
	 */
	public void CalAll(){
		for( int i = 0; i< popSize; i++){
			citys[i].fitness = 0;
			citys[i].selectP = 0;
			citys[i].exceptp = 0;
			citys[i].isSelected = 0;
		}
		CalFitness();
		CalSelectP();
		CalExceptP();
		CalIsSelected();
	}

	/**
	 * 	填充,将多选的填充到未选的个体当中
	 */
	public void pad(){
		int best = 0;
		int bad = 0;
		while(true){			
			while(citys[best].isSelected <= 1 && best<popSize-1)
				best ++;
			while(citys[bad].isSelected != 0 && bad<popSize-1)
				bad ++;
			for(int i = 0; i< cityNum; i++)
				citys[bad].city[i] = citys[best].city[i];
				citys[best].isSelected --;
				citys[bad].isSelected ++;
				bad ++;	
			if(best == popSize ||bad == popSize)
				break;
		}
	}
	
	/**
	 * 	交叉主体函数
	 */
	public void crossover() {
		int x;
		int y;
		int pop = (int)(popSize* pxover /2);
		while(pop>0){
			x = (int)(Math.random()*popSize);
			y = (int)(Math.random()*popSize);
			
			executeCrossover(x,y);//x y 两个体执行交叉
			pop--;
		}
	}
	
	/**
	 * 执行交叉函数
	 * @param 个体x
	 * @param 个体y
	 * 对个体x和个体y执行佳点集的交叉,从而产生下一代城市序列
	 */
	private void executeCrossover(int x,int y){
		int dimension = 0;
		for( int i = 0 ;i < cityNum; i++)
			if(citys[x].city[i] != citys[y].city[i]){
				dimension ++;
			}	
		int diffItem = 0;
		double[] diff = new double[dimension];

		for( int i = 0 ;i < cityNum; i++){
			if(citys[x].city[i] != citys[y].city[i]){
				diff[diffItem] = citys[x].city[i];
				citys[x].city[i] = -1;
				citys[y].city[i] = -1;
				diffItem ++;
			}	
		}
	
		Arrays.sort(diff);

		double[] temp = new double[dimension];
		temp = gp(x, dimension);

		for( int k = 0; k< dimension;k++)
			for( int j = 0; j< dimension; j++)
				if(temp[j] == k){
					double item = temp[k];
					temp[k] = temp[j];
					temp[j] = item;
					
					item = diff[k];
					diff[k] = diff[j];
					diff[j] = item;	
				}
		int tempDimension = dimension;
		int tempi = 0;

		while(tempDimension> 0 ){
			if(citys[x].city[tempi] == -1){
				citys[x].city[tempi] = (int)diff[dimension - tempDimension];
				
				tempDimension --;
			}	
			tempi ++;
		}

		Arrays.sort(diff);

		temp = gp(y, dimension);

		for( int k = 0; k< dimension;k++)
			for( int j = 0; j< dimension; j++)
				if(temp[j] == k){
					double item = temp[k];
					temp[k] = temp[j];
					temp[j] = item;
					
					item = diff[k];
					diff[k] = diff[j];
					diff[j] = item;	
				}

		tempDimension = dimension;
		tempi = 0;

		while(tempDimension> 0 ){
			if(citys[y].city[tempi] == -1){
				citys[y].city[tempi] = (int)diff[dimension - tempDimension];
				
				tempDimension --;
			}	
			tempi ++;
		}

	}
	
	/**
	 * @param individual 个体
	 * @param dimension	  维数
	 * @return 佳点集	(用于交叉函数的交叉点)	在executeCrossover()函数中使用
	 */
	private double[] gp(int individual, int dimension){
		double[] temp = new double[dimension];
		double[] temp1 = new double[dimension];
		int p = 2 * dimension + 3;

		while(!isSushu(p))
			p++;

		for( int i = 0; i< dimension; i++){
			temp[i] = 2*Math.cos(2*Math.PI*(i+1)/p) * (individual+1);
			temp[i] = temp[i] - (int)temp[i];
			if( temp [i]< 0)
				temp[i] = 1+temp[i];

		}
		for( int i = 0; i< dimension; i++)
			temp1[i] = temp[i];
		Arrays.sort(temp1);	
		//排序
		for( int i = 0; i< dimension; i++)
			for( int j = 0; j< dimension; j++)
				if(temp[j]==temp1[i])
					temp[j] = i;	
		return temp;
	}
	
	
	/**
	 * 	变异
	 */
	public void mutate(){
		double random;
		int temp;
		int temp1;
		int temp2;
		for( int i = 0 ; i< popSize; i++){
			random = Math.random();
			if(random<=pmultation){
				temp1 = (int)(Math.random() * (cityNum));
				temp2 = (int)(Math.random() * (cityNum));
				temp = citys[i].city[temp1];
				citys[i].city[temp1] = citys[i].city[temp2];
				citys[i].city[temp2] = temp;

			}
		}		
	}
	
	/**
	 *	打印当前代数的所有城市序列,以及其相关的参数
	 */
	public void print(){
	/**
	 * 初始化各城市之间的距离
	 */
	private void initDistance(){
		for (int i = 0; i < cityNum; i++) {
			for (int j = 0; j < cityNum; j++){
				distance[i][j] = Math.abs(i-j);
			}
		}
	}
	
	/**
	 * 计算所有城市序列的适应度
	 */
	private void CalFitness() {
		for (int i = 0; i < popSize; i++) {
			for (int j = 0; j < cityNum - 1; j++)
				citys[i].fitness += distance[citys[i].city[j]][citys[i].city[j + 1]];
			citys[i].fitness += distance[citys[i].city[0]][citys[i].city[cityNum - 1]];
		}
	}
	
	/**
	 * 计算选择概率
	 */
	private void CalSelectP(){
		long sum = 0;
		for( int i = 0; i< popSize; i++)
			sum += citys[i].fitness;
		for( int i = 0; i< popSize; i++)
			citys[i].selectP = (double)citys[i].fitness/sum;

	}
	
	/**
	 * 计算期望概率
	 */
	private void CalExceptP(){
		for( int i = 0; i< popSize; i++)
			citys[i].exceptp = (double)citys[i].selectP * popSize;
	}
	
	/**
	 * 计算该城市序列是否较优,较优则被选择,进入下一代
	 */
	private void CalIsSelected(){
		int needSelecte = popSize;
		for( int i = 0; i< popSize; i++)
			if( citys[i].exceptp<1){
				citys[i].isSelected++;
				needSelecte --;
			}
		double[] temp = new double[popSize];
		for (int i = 0; i < popSize; i++) {
//			temp[i] = citys[i].exceptp - (int) citys[i].exceptp;
//			temp[i] *= 10;
			temp[i] = citys[i].exceptp*10;
		}
		int j = 0;
		while (needSelecte != 0) {
			for (int i = 0; i < popSize; i++) {
				if ((int) temp[i] == j) {
					citys[i].isSelected++;
					needSelecte--;
					if (needSelecte == 0)
						break;
				}
			}
			j++;
		}
		
	}
	
	/**
	 * @param x
	 * @return 判断一个数是否是素数的函数
	 */
	private boolean isSushu( int x){
		   if(x<2) return false;
		   for(int i=2;i<=x/2;i++)
		   if(x%i==0&&x!=2) return false;

		   return true;
		}
	
	/**
	 * @param x 数组
	 * @return x数组的值是否全部相等,相等则表示x.length代的最优结果相同,则算法结束
	 */
	private boolean isSame(long[] x){
		for( int i = 0; i< x.length -1; i++)
			if(x[i] !=x[i+1])
				return false;
		return true;
	}
	
	/**
	 * 打印任意代最优的路径序列
	 */
	private void printBestRoute(){
		CalAll();
		long temp = citys[0].fitness;
		int index = 0;
		for (int i = 1; i < popSize; i++) {
			if(citys[i].fitness<temp){
				temp = citys[i].fitness;
				index = i;
			}
		}
		System.out.println();
		System.out.println("最佳路径的序列:");
		for (int j = 0; j < cityNum; j++)
		{
			String cityEnd[]={cityName[citys[index].city[j]]};
			for(int m=0;m<cityEnd.length;m++)
		    {
			    System.out.print(cityEnd[m] + " ");
		    }
		}
		
			//System.out.print(citys[index].city[j] + cityName[citys[index].city[j]] + "  ");
			//System.out.print(cityName[citys[index].city[j]]);
		System.out.println();
	}
	
	/**
	 * 算法执行
	 */
	public void run(){
		long[] result = new long[range];
		//result初始化为所有的数字都不相等
		for( int i  = 0; i< range; i++)
			result[i] = i;
		int index = 0;		//数组中的位置
		int num = 1;		//第num代
		while(maxgens>0){
			System.out.println("-----------------  第  "+num+" 代  -------------------------");
			CalAll();
			print();
			pad();
			crossover();
			mutate();
			maxgens --;
			long temp = citys[0].fitness;
			for ( int i = 1; i< popSize; i++)
				if(citys[i].fitness<temp){
					temp = citys[i].fitness;
				}
			System.out.println("最优的解:"+temp);
			result[index] = temp;
			if(isSame(result))
				break;
			index++;
			if(index==range)
				index = 0;
			num++;
		}
		printBestRoute();
	}
	
	/**
	 * @param a 开始时间
	 * @param b	 结束时间
	 */
	public void CalTime(Calendar a,Calendar b){
		long x = b.getTimeInMillis() - a.getTimeInMillis();
		long y = x/1000;
		x = x - 1000*y;
		System.out.println("算法执行时间:"+y+"."+x+" 秒");
	}
	
	/**
	 *    程序入口 
	 */
	public static void main(String[] args) {
		
		Calendar a = Calendar.getInstance();	//开始时间
		Tsp tsp = new Tsp();
		tsp.run();
		Calendar b = Calendar.getInstance();	//结束时间
		tsp.CalTime(a, b);
		
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值