LeetCode第四天

LeetCode第四天

只记录中高等难度的题(高等怕的很,暂时中等)

一、剑指 Offer 64. 求1+2+…+n

剑指 Offer 64. 求1+2+…+n

求 1+2+…+n ,要求不能使用乘除法、for、while、if、else、switch、case等关键字及条件判断语句(A?B:C)。

示例 1:

输入: n = 3
输出: 6

示例 2:

输入: n = 9
输出: 45

class Solution {
    public int sumNums(int n) {
        boolean flag = n > 0 && (n += sumNums(n - 1)) > 0;
        return n;
    }
}

个人题解:

递归。看到这一题的第一反应肯定都是递归,但是递归就会用到if、else,除非不用。利用&&的特性,当前面为假false时,后半部分不进行执行,所以用&&当if,前半部分作为递归条件,后面部分作为递归方程。

二、967. 连续差相同的数字

967. 连续差相同的数字

返回所有长度为 n 且满足其每两个连续位上的数字之间的差的绝对值为 k 的 非负整数 。

请注意,除了 数字 0 本身之外,答案中的每个数字都 不能 有前导零。例如,01 有一个前导零,所以是无效的;但 0 是有效的。

你可以按 任何顺序 返回答案。

示例 1:

输入:n = 3, k = 7
输出:[181,292,707,818,929]
解释:注意,070 不是一个有效的数字,因为它有前导零。
示例 2:

输入:n = 2, k = 1
输出:[10,12,21,23,32,34,43,45,54,56,65,67,76,78,87,89,98]
示例 3:

输入:n = 2, k = 0
输出:[11,22,33,44,55,66,77,88,99]

class Solution {
    public int[] numsSameConsecDiff(int N, int K) {
        Set<Integer> cur = new HashSet();
        for (int i = 1; i <= 9; ++i)
            cur.add(i);
        for (int steps = 1; steps <= N-1; ++steps) {
            Set<Integer> cur2 = new HashSet();
            for (int x: cur) {
                int d = x % 10;
                if (d-K >= 0)
                    cur2.add(10*x + (d-K));
                if (d+K <= 9)
                    cur2.add(10*x + (d+K));
            }
            cur = cur2;
        }
        if (N == 1)
            cur.add(0);
        int[] ans = new int[cur.size()];
        int t = 0;
        for (int x: cur)
            ans[t++] = x;
        return ans;
    }
}

个人题解:

暴力。。。

三、1191. K 次串联后最大子数组之和

1191. K 次串联后最大子数组之和

给定一个整数数组 arr 和一个整数 k ,通过重复 k 次来修改数组。

例如,如果 arr = [1, 2] , k = 3 ,那么修改后的数组将是 [1, 2, 1, 2, 1, 2] 。

返回修改后的数组中的最大的子数组之和。注意,子数组长度可以是 0,在这种情况下它的总和也是 0。

由于 结果可能会很大,需要返回的 109 + 7 的 模 。

示例 1:

输入:arr = [1,2], k = 3
输出:9
示例 2:

输入:arr = [1,-2,1], k = 5
输出:2
示例 3:

输入:arr = [-1,-2], k = 7
输出:0

class Solution {
  public int kConcatenationMaxSum(int[] arr, int k) {
    if (arr == null || arr.length == 0) return 0;
    long maxOfEnd = arr[0] > 0 ? arr[0] : 0L, maxSoFar = maxOfEnd, sum = arr[0];
    for (int i = 1; i < Math.min(k, 2) * arr.length; i++) {
      maxOfEnd = Math.max(maxOfEnd + arr[i % arr.length], arr[i % arr.length]);
      maxSoFar = Math.max(maxOfEnd, maxSoFar);
      if (i < arr.length) sum += arr[i];
    }
    while (sum > 0 && --k >= 2)
      maxSoFar = (maxSoFar + sum) % 1000000007;
    return (int) maxSoFar % 1000000007;
  }
}

大佬题解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值