【数据结构】二叉树的一个应用,哈夫曼编码的生成

1.哈夫曼树只有结点为0.或者结点为2的值。所以如果叶子结点为n的话,那么整个哈夫曼树的所有结点个数为2n-1;因为结点为2的结点个数n0=n2+1;所以总数n=n0+n2=2n0-1;

  

过程:<1>由已知的n个权值形成哈夫曼树的初态,即在数组ht[]的前n项中填入相应的权值。

           <2>建立哈夫曼树。依次将数组ht[]中的第n+1项到第m项作为当前项,并进行以下处理:

                      1.在前已形成的项目中选择两个权值最小且无双亲的项。

                      2.将当前项的序号填入两个选择的项作为双亲,将两个选择项的序号填入当前项分别作为左右孩子。

                      3.将两个选择项的权值相加后填入当前项作为当前项的权值。

           <3>由已形成的哈夫曼树求哈夫曼编码。对每个叶节点都进行如下处理:

             扫描由叶节点到根节点的各条分支,若果分支中的当前结点与双亲关系是左支关系,则生成编码0,若分之中的当前结点与双亲结点是右支关系,则生成编码1,由此生成的二级制码的序列即为该结点的哈夫曼编码。

程序如下:

#include<iostream>
using namespace std;
#define maxlen 100
struct HaffNode
{
int weight;
int parent;
int lchild;
int rchild;
};
struct HaffCode
{
int bit[maxlen];
int start;
int weight;
};
void Haffman(int w[],int n,HaffNode ht[], HaffCode hc[])
{
int i, j, m1, m2, x1, x2;//m1,m2分别表示最小,次小的权值;x1,x2分别表示当前分支结点的左右儿子
//步骤1.构造哈夫曼树
for (i = 0; i < 2 * n - 1; i++)//哈夫曼树初始化
{
if (i < n)ht[i].weight = w[i];
else
ht[i].weight = 0;
ht[i].parent = 0;
ht[i].lchild = ht[i].rchild = -1;
}
for (i = 0; i < n - 1; i++)//构造哈夫曼树的n-1个分支结点
{
m1 = m2 = 1000;
x1 = x2 = 0;
for (j = 0; j < n + i; j++)
{
if (ht[j].weight < m1 && ht[j].parent == 0)
{
m2 = m1;//最小保存到次小
x2 = x1;
m1 = ht[j].weight;
x1 = j;
}
else if (ht[j].weight < m2 && ht[j].parent == 0)
{
m2 = ht[j].weight;
x2 = j;
}
}
ht[x1].parent = n + i;
ht[x2].parent = n + i;
ht[n + i].weight = ht[x1].weight + ht[x2].weight;
ht[n + i].lchild = x1;
ht[n + i].rchild = x2;
}
//步骤2 由哈夫曼树生成哈夫曼编码
HaffCode cd;
int child, parent;
for (i = 0; i < n; i++)//由哈夫曼树生成哈夫曼编码
{
cd.start = n - 1;
cd.weight = ht[i].weight;
child = i;
parent = ht[child].parent;
while (parent != 0)
{
if (ht[parent].lchild == child)
cd.bit[cd.start] = 0;
else
cd.bit[cd.start] = 1;
cd.start--;
child = parent;
parent = ht[child].parent;
}
for (j = cd.start + 1; j < n; j++)
hc[i].bit[j] = cd.bit[j];
hc[i].start = cd.start;
hc[i].weight = cd.weight;
}


}
int main(void)
{
int w[] = { 4, 2, 6, 8, 3, 2, 1 };
int n = 7, i, j;
HaffNode *ht = new HaffNode[2 * n - 1];
HaffCode *hc = new HaffCode[n];
Haffman(w, n,ht, hc);
for (i = 0; i < n; i++)
{
cout << "weight=" << hc[i].weight << "code=";
for (j = hc[i].start + 1; j < n; j++)
cout << hc[i].bit[j];
  cout << endl;
}
}

效果图:


阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页