9/23 Partial order relations

Partial order relation

Partial ordered sets

A relation R R R on a set A A A is called a partial order if R R R is reflexive, antisymmetric and transitive. The set A A A together with the partial order R R R is called a partially ordered set, or simply a poset, and we denote this poset by ( A , R ) (A,R) (A,R).

antisymmetric:
A relation R R R on a set A A A is antisytmmetric if whenever a    R    b a\;R\;b aRb, then b    ℟    a b\;℟\;a ba, unless a = b a=b a=b

The notation a ≼ b a\preccurlyeq b ab denotes that ( a , b ) ∈ R (a,b)\in R (a,b)R
Note that the symbol ≼ \preccurlyeq is used to denote the relation in any poset, not just the lessthan or equals relation.
The notation a ≺ b a\prec b ab denotes that a ≼ b , b u t    a ≠ b a\preccurlyeq b, but \;a\ne b ab,buta=b

Comparable

The elements a a a and b b b of a poset ( A , ≼ ) (A,\preccurlyeq) (A,) are called comparable if either a ≼ b    o r    b ≼    a a\preccurlyeq b\;or\;b\preccurlyeq\;a aborba.
When a a a and b b b are elements of A A A such that neither a ≼ b a\preccurlyeq b ab nor b ≼ a b\preccurlyeq a ba, a a a and b b b are called incomparable

total order (linearly order)

If ( A , ≼ ) (A,\preccurlyeq) (A,) is a poset and every elements of A A A are comparable, A A A is called a totally ordered or linearly ordered set, and ≼ \preccurlyeq is called a total order or linear order.

A totally ordered set is also called a chain.

Hasse Diagram

  1. partial order is reflexive , thus we should delete all loop from the digraph
  2. Because a partial order is transitive, we do not have to show those edges that must be present because of transitivity.
  3. If we assume that all edges are pointed upward, we do not have to show the directions of the edges

Extremal elements of partially ordered sets

maximal & minimal element

Let ( A , ≼ ) (A,\preccurlyeq) (A,) is a poset. An elements a ∈ A a\in A aA is called a maximal element of A A A if there is no elements c c c in A A A such that a ≺ c a\prec c ac.
An elements b ∈ A b\in A bA is called a minimal element of A A A if there is no elements c c c in A A A such that c ≺ b c\prec b cb

A poset can have more than one maximal or minimal element.

greatest element & least element

Let ( A , ≼ ) (A,\preccurlyeq) (A,) is a poset.
An element a ∈ A a\in A aA is called a greatest element of A A A if x ≼ a x\preccurlyeq a xa for all x ∈ A x\in A xA
An elements a ∈ A a\in A aA is called a least element of A A A if a ≼ x a\preccurlyeq x ax for all x ∈ A x\in A xA

upper bound & lower bound

Let ( A , ≼ ) (A,\preccurlyeq) (A,) is a poset, and B ⊆ A B\subseteq A BA.
An element a ∈ A a\in A aA is called an upper bound of B B B if b ≼ a b \preccurlyeq a ba for all b ∈ B b\in B bB.
An element a ∈ A a\in A aA is called a lower bound of B B B if a ≼ b a\preccurlyeq b ab for all b ∈ B b\in B bB

LUB & GLB

Let ( A , ≼ ) (A,\preccurlyeq) (A,) be a poset, and B ⊆ A B\subseteq A BA.

An element a ∈ A a\in A aA is called a least upper bound of B    B\; B ( L U B ( B ) ) (LUB(B)) (LUB(B)), if a a a is an upper bound of B B B and a ≼ a ′ a\preccurlyeq a' aa, whenever a ′ a' a is an upper bound of B B B.
An element a ∈ A a\in A aA is called a greatest lower bound of B B B ( G L B ( B ) ) (GLB(B)) (GLB(B)), if a lower bound of B B B and a ′ ≼ a a'\preccurlyeq a aa, whenever a ′ a' a is an lower bound of B B B


Function

Definition

Let A A A and B B B be nonempty sets.
A relation is an everywhere function from A A A to B B B, denoted by
f : A → B f: A\to B f:AB
If for every a ∈ A a\in A aA, there is one and only b ∈ B b\in B bB so that ( a , b ) ∈ f (a,b)\in f (a,b)f, we say that b = f ( a ) b=f(a) b=f(a)

The set A A A is called the domain of the function f f f.
If X ⊆ A X\subseteq A XA, then f ( X ) = { f ( a ) ∣ a ∈ X } f(X)=\{f(a)|a\in X\} f(X)={f(a)aX} is called the image of X X X, the image of A A A itself is called the range of f f f, we write R f R_f Rf

If Y ⊆ B Y\subseteq B YB, then f − 1 ( Y ) = { a ∣ f ( a ) ∈ Y } f^{-1}(Y)=\{a|f(a)\in Y\} f1(Y)={af(a)Y} is called the preimage of Y Y Y.

A function f : A → B f:A\to B f:AB is called a mapping. If ( a , b ) ∈ f (a,b)\in f (a,b)f so that b = f ( a ) b= f(a) b=f(a), then we say that the element a a a is mapped to element b b b.

Everywhere function

  1. D o m f = A Domf = A Domf=A
  2. if ( a , b ) (a,b) (a,b) and ( a , b ′ ) ∈ f (a,b')\in f (a,b)f, then b = b ′ b=b' b=b

in other words
D o m R = A DomR = A DomR=A

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值