一. 简介
本文记录力扣网上的逻辑编程题,涉及数组方面的,主要以 C语言实现。
二. 力扣网C语言编程题:盛最多水的容器
题目:盛最多水的容器
给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。
找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
返回容器可以储存的最大水量。
说明:你不能倾斜容器。
示例 1:
输入:[1,8,6,2,5,4,8,3,7]
输出:49
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例 2:
输入:height = [1,1]
输出:1
提示:
n == height.length
2 <= n <= 105
0 <= height[i] <= 104
解题思路一:(暴力解法,力扣网上编译显示超过时间限制,没有编译通过)
依次计算所有组合的容量,不断更新 max_capacity;
双层for循环实现轮询统计所有组合的容量;
C语言实现如下:
#include <stdio.h>
#define MAX(a, b) ((a) > (b) ? (a) : (b))
int maxArea(int* height, int heightSize) {
if((height == NULL) || (!heightSize) || (1 == heightSize)) {
return 0;
}
int i, j;
int current_capacity = 0, max_capacity = 0;
for(i = 0; i < (heightSize-1); i++) {
for(j = 1; j < heightSize; j++) {
if(height[i] > height[j]) {
current_capacity = height[j] * (j-i);
}
else{
current_capacity = height[i] * (j-i);
}
max_capacity = MAX(current_capacity, max_capacity);
}
}
return max_capacity;
}
可以看出,上述实现逻辑上不存在问题,但是在力扣网上编译提示超过时间限制。可以看出这种实现方法的时间复杂度为 O(n*n),接下来学习第二种解题思路。
解题思路二:
遍历一遍数组,使用类似双指针的功能,从数组的首尾两端开始统计最大容量。
影响容量大小的取决于元素值(即宽度)和两个元素之间的距离,因为从头部和尾部同时开始时是两个元素之间距离最大的时候,这时影响容量大小的就是元素值。
所以,比较两端元素值,当元素值小的一端则指针继续自增或自减(指针向前进);
具体方法:
1. 遍历一遍数组,指定两个指针,首先计算当前容量,更新最大容量值;
2. 判断首部元素与尾部元素大小,值小的那端指针自增或自减(再查找最大元素值的元素);
C语言实现如下:
#include <stdio.h>
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
int maxArea(int* height, int heightSize) {
if((height == NULL) || (!heightSize) || (1 == heightSize)) {
return 0;
}
int current_capacity = 0;
int max_capacity = 0;
int left = 0;
int right = heightSize-1;
while(left < right) {
current_capacity = MIN(height[left], height[right]) *(right-left);
max_capacity = MAX(current_capacity, max_capacity);
if(height[left] < height[right]) {
left++;
}
else {
right--;
}
}
return max_capacity;
}
可以看出,这种实现方法的时间复杂度为O(n),空间复杂度为 O(1)。
解题思路二还有下面一种实现方法(两种方法进行比较,还是上面实现方法好一些,步骤比较少一些):
#include <stdio.h>
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
int maxArea(int* height, int heightSize) {
if((height == NULL) || (!heightSize) || (1 == heightSize)) {
return 0;
}
int current_capacity = 0;
int max_capacity = 0;
int left = 0;
int right = heightSize-1;
while(left < right) {
if(height[left] < height[right]) {
current_capacity = height[left] *(right-left);
left++;
}
else {
current_capacity = height[right] *(right-left);
right--;
}
max_capacity = MAX(current_capacity, max_capacity);
}
return max_capacity;
}
可以看出,时间复杂度也是 O(n),空间复杂度是 O(1)。