和为n连续正数序列

题目:输入一个正数n,输出所有和为n连续正数序列。

例如输入15,由于1+2+3+4+5=4+5+6=7+8=15,所以输出3个连续序列1-54-67-8

分析:这是网易的一道面试题。

这道题和本面试题系列的第10有些类似。我们用两个数smallbig分别表示序列的最小值和最大值。首先把small初始化为1big初始化为2。如果从smallbig的序列的和大于n的话,我们向右移动small,相当于从序列中去掉较小的数字。如果从smallbig的序列的和小于n的话,我们向右移动big,相当于向序列中添加big的下一个数字。一直到small等于(1+n)/2,因为序列至少要有两个数字。

基于这个思路,我们可以写出如下代码:

void PrintContinuousSequence(int small, int big);
 
 /
 // Find continuous sequence, whose sum is n
 /
 void FindContinuousSequence(int n)
 {
       if(n < 3)
             return;
 
       int small = 1; 
       int big = 2;
       int middle = (1 + n) / 2;
       int sum = small + big;
 
       while(small < middle)
       {
             // we are lucky and find the sequence
             if(sum == n)
                   PrintContinuousSequence(small, big);
 
             // if the current sum is greater than n, 
             // move small forward
             while(sum > n)
             {
                   sum -= small;
                   small ++;
 
                   // we are lucky and find the sequence
                   if(sum == n)
                         PrintContinuousSequence(small, big);
             }
 
             // move big forward
             big ++;
             sum += big;
       }
 }
 
 /
 // Print continuous sequence between small and big
 /
 void PrintContinuousSequence(int small, int big)
 {
       for(int i = small; i <= big; ++ i)
             printf("%d ", i);
 
       printf("\n");
 }

以上转自何海涛博客

 

刚在《编程之美》2.21节看到这题,网上查了一下,发现了一个O(n^1/2)的算法,具体解析如下

 

 

我们知道:

1+2 = 3;

4+5 = 9;

2+3+4 = 9。

等式的左边都是两个以上连续的自然数相加,那么是不是所有的整数都可以写成这样的形式呢?稍微考虑一下,我们发现,4和8等数不能写成这样的形式。

问题1:写一个程序,对于一个64位的正整数,输出它所有可能的连续自然数(两个以上)之和的算式。

问题2:大家在测试上面的程序的过程中,肯定会注意到有一些数字不能表达为一系列连续的自然数之和,例如32好像就找不到。那么,这样的数字有什么规律呢?能否证明你的结论?

问题3:在64位正整数范围内,子序列数目最多的数是哪一个?这个问题要用程序蛮力搜索,恐怕要运行很长时间,能够用数学知识推导出来?

问题1解答:对于任意的正整数n >= 3(1和2均不能写成连续的自然数序列之和)。假设n能够写成自然数序列[seqStart, seqEnd]之和,则有(seqEnd + seqStart)*(seqEnd - seqStart + 1) = 2*n。考虑左式是两个整数之积,想到对右边的2*n进行因数分解,不妨假定2*n = minFactor * maxFactor,则有

seqEnd + seqStart = maxFactor           (1)

seqEnd - seqStart = minFactor-1          (2)

解方程组(1)(2)得:

seqStart = (maxFactor - minFactor + 1) / 2

seqEnd = (maxFactor + minFactor - 1) / 2

因为maxFactor - minFactor与maxFactor + minFactor有相同的奇偶性,因此只需要判断maxFactor + minFactor的奇偶性即可,如果maxFactor + minFactor为奇数,那么seqStart和seqEnd不是分数,是整数,即这个序列存在。下面是代码:

int plusSequence(unsigned int n)
 {
     int count = 0;
     int sqrtN = static_cast<int>(sqrt(static_cast<double>(2*n)));
     for(int i = 2; i <= sqrtN; ++ i)
     {
         if(2*n % i == 0) // if the current i is the factor of 2*n
         {
             int minFactor = i;
             int maxFactor = 2*n / i;
             /* Judge if (minFactor + maxFactor) is odd, if it is,
              * it means that the n is the sum of a natural number sequence
              */
             if(((minFactor + maxFactor) & 0x00000001) == 1) 
             {
                 count ++;
                 int seqStart = (maxFactor - minFactor + 1) >> 1;
                 int seqEnd = (maxFactor + minFactor - 1) >> 1;
                 printf("count %d is closed interval [%d, %d]/n", count, seqStart, seqEnd);
             }
         }        
     }
     return count;
 }

问题二解答:

对于任意的奇数n = 2*k + 1(k >= 1),均可以写成[k, k + 1]之和,因此所有的奇数均满足条件。

对于每一个偶数,均可以分解为质因数之积,即n = pow(2, i)*pow(3, j)*pow(5,k)...,如果除了i之外,j,k...均为0,那么n = pow(2, k),对于这种数,其所有的因数均为偶数,观察上面的代码,14行要求两个因数之和为奇数,因此2的幂均不满足条件。对于非2的幂的偶数,均可以写成一个 奇数和偶数之积,因此满足14行的条件,说明可以写成一个连续的自然数之和。因此除了2的幂之外,所有的正整数n >=3均可以写成一个连续的自然数之和。

问题三解答:

前面就当是抛砖引玉,问题三还没有解答出来,如果大家有什么思路,可以联系我。

注:上面的程序并没有考虑整数很大,导致溢出的情况。

 

以上转自http://blog.csdn.net/wangpingfang/article/details/5893412
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值