实现 LRU 缓存机制

实现 LRU 缓存机制

一、什么是 LRU 算法

LRU 就是一种缓存淘汰策略。(比较常见的内存替换算法有:FIFO(先进先出淘汰算法),LRU最近最少使用替换算法),LFU(最不经常访问淘汰算法),LRU-K(最久未使用K次淘汰算法),2Q(类似LRU-2))

  • 计算机的缓存容量有限,如果缓存满了就要删除一些内容,给新内容腾位置。但问题是,删除哪些内容呢?我们肯定希望删掉那些没什么用的缓存,而把有用的数据继续留在缓存里,方便之后继续使用。那么,什么样的数据,我们判定为「有用的」的数据呢?
  • LRU 缓存淘汰算法就是一种常用策略。LRU 的全称是 Least Recently Used,也就是说我们认为 最近使用过的数据应该是是「有用的」,很久都没用过的数据应该是无用的,缓存满了就优先删那些很久没用过的数据

举个简单的例子,安卓手机都可以把软件放到后台运行,比如我先后打开了「设置」「手机管家」「日历」,那么现在他们在后台排列的顺序是这样的:

在这里插入图片描述
但是这时候如果我访问了一下「设置」界面,那么「设置」就会被提前到第一个,变成这样:

在这里插入图片描述
假设我的手机只允许我同时开 3 个应用程序,现在已经满了。那么如果我新开了一个应用「时钟」,就必须关闭一个应用为「时钟」腾出一个位置,关那个呢?

按照 LRU 的策略,就关最底下的「手机管家」,因为那是最久未使用的,然后把新开的应用放到最上面:

在这里插入图片描述

二、LRU 算法描述

在这里插入图片描述
在这里插入图片描述
这是一道 LRU 算法设计的题目。让你设计一种数据结构,首先构造函数接收一个 capacity 参数作为缓存的最大容量,然后实现两个 API:

  • 一个是 put(key, val) 方法插入新的或更新已有键值对,如果缓存已满的话,要删除那个最久没用过的键值对以腾出位置插入
  • 另一个是 get(key) 方法获取 key 对应的 val,如果 key 不存在则返回 -1。

注意哦,get 和 put 方法必须都是 O(1) 的时间复杂度,我们举个具体例子来看看 LRU 算法怎么工作。

/* 缓存容量为 2 */
LRUCache cache = new LRUCache(2);
// 你可以把 cache 理解成一个队列
// 假设左边是队头,右边是队尾
// 最近使用的排在队头,久未使用的排在队尾
// 圆括号表示键值对 (key, val)

cache.put(1, 1);
// cache = [(1, 1)]

cache.put(2, 2);
// cache = [(2, 2), (1, 1)]

cache.get(1);       // 返回 1
// cache = [(1, 1), (2, 2)]
// 解释:因为最近访问了键 1,所以提前至队头
// 返回键 1 对应的值 1

cache.put(3, 3);
// cache = [(3, 3), (1, 1)]
// 解释:缓存容量已满,需要删除内容空出位置
// 优先删除久未使用的数据,也就是队尾的数据
// 然后把新的数据插入队头

cache.get(2);       // 返回 -1 (未找到)
// cache = [(3, 3), (1, 1)]
// 解释:cache 中不存在键为 2 的数据

cache.put(1, 4);    
// cache = [(1, 4), (3, 3)]
// 解释:键 1 已存在,把原始值 1 覆盖为 4
// 不要忘了也要将键值对提前到队头

三、LRU 算法设计

  • 分析上面的操作过程,要让 put 和 get 方法的时间复杂度为 O(1),我们可以总结出 cache这个数据结构必要的条件:查找快,插入快,删除快,有顺序之分
  • 因为显然 cache 必须有顺序之分,以区分最近使用的和久未使用的数据;而且我们要在 cache 中查找键是否已存在;如果容量满了要删除最后一个数据;每次访问还要把数据插入到队头
  • 那么,什么数据结构同时符合上述条件呢?哈希表查找快,但是数据无固定顺序;链表有顺序之分,插入删除快,但是查找慢。所以结合一下,形成一种新的数据结构:哈希链表

LRU 缓存算法的核心数据结构就是哈希链表,双向链表和哈希表的结合体。这个数据结构长这样:

在这里插入图片描述
思想很简单,就是借助哈希表赋予了链表快速查找的特性嘛:可以快速查找某个 key 是否存在缓存(链表)中,同时可以快速删除、添加节点。回想刚才的例子,这种数据结构是不是完美解决了 LRU 缓存的需求?

也许读者会问,为什么要是双向链表,单链表行不行?另外,既然哈希表中已经存了 key,为什么链表中还要存键值对呢,只存值不就行了?

想的时候都是问题,只有做的时候才有答案。这样设计的原因,必须等我们亲自实现 LRU 算法之后才能理解,所以我们开始看代码吧~

四、代码实现

很多编程语言都有内置的哈希链表或者类似 LRU 功能的库函数,但是为了帮大家理解算法的细节,我们用 Java 自己造轮子实现一遍 LRU 算法。

首先,我们把双链表的节点类写出来,为了简化,key 和 val 都认为是 int 类型:

class Node 
{
    public int key, val;
    public Node next, prev;
    public Node(int k, int v) 
    {
        this.key = k;
        this.val = v;
    }
}

然后依靠我们的 Node 类型构建一个双链表,实现几个要用到的 API,这些操作的时间复杂度均为 O(1)

class DoubleList 
{  
    // 在链表头部添加节点 x
    public void addFirst(Node x);

    // 删除链表中的 x 节点(x 一定存在)
    public void remove(Node x);

    // 删除链表中最后一个节点,并返回该节点
    public Node removeLast();

    // 返回链表长度
    public int size();
}

到这里就能回答刚才“为什么必须要用双向链表”的问题了,因为我们需要删除操作。删除一个链表节点不光要得到该节点本身的指针,也需要操作其前驱节点的指针,而双向链表才能支持直接查找前驱,保证操作的时间复杂度 O(1)。

有了双向链表的实现,我们只需要在 LRU 算法中把它和哈希表结合起来即可。我们先把逻辑理清楚:

// key 映射到 Node(key, val)
HashMap<Integer, Node> map;

// Node(k1, v1) <-> Node(k2, v2)...
DoubleList cache;

int get(int key) 
{
    if (key 不存在) 
    {
        return -1;
    } 
    else 
    {        
        将数据 (key, val) 提到开头;
        return val;
    }
}

void put(int key, int val) 
{
    Node x = new Node(key, val);
    if (key 已存在) 
    {
        把旧的数据删除;
        将新节点 x 插入到开头;
    } 
    else 
    {
        if (cache 已满) 
        {
            删除链表的最后一个数据腾位置;
            删除 map 中映射到该数据的键;
        } 
        将新节点 x 插入到开头;
        map 中新建 key 对新节点 x 的映射;
    }
}

如果能够看懂上述逻辑,翻译成代码就很容易理解了:

class LRUCache {
    // key -> Node(key, val)
    private HashMap<Integer, Node> map;
    
    // Node(k1, v1) <-> Node(k2, v2)...
    private DoubleList cache;
    
    // 最大容量
    private int cap;
    
    public LRUCache(int capacity) 
    {
        this.cap = capacity;
        map = new HashMap<>();
        cache = new DoubleList();
    }
    
    public int get(int key) 
    {
        if (!map.containsKey(key))
            return -1;
        int val = map.get(key).val;
        // 利用 put 方法把该数据提前
        put(key, val);
        return val;
    }
    
    public void put(int key, int val) 
    {
        // 先把新节点 x 做出来
        Node x = new Node(key, val);
        
        if (map.containsKey(key)) 
        {
            // 删除旧的节点,新的插到头部
            cache.remove(map.get(key));
            cache.addFirst(x);
            // 更新 map 中对应的数据
            map.put(key, x);
        } 
        else 
        {
            if (cap == cache.size()) 
            {
                // 删除链表最后一个数据
                Node last = cache.removeLast();
                map.remove(last.key);
            }
            // 直接添加到头部
            cache.addFirst(x);
            map.put(key, x);
        }
    }
}

这里就能回答之前的问答题“为什么要在链表中同时存储 key 和 val,而不是只存储 val”,注意这段代码:

if (cap == cache.size()) {
    // 删除链表最后一个数据
    Node last = cache.removeLast();
    map.remove(last.key);
}
  • 当缓存容量已满,我们不仅仅要删除最后一个 Node 节点,还要把 map 中映射到该节点的 key 同时删除,而这个 key 只能由 Node 得到。如果 Node 结构中只存储 val,那么我们就无法得知 key 是什么,就无法删除 map中的键,造成错误
  • 至此,你应该已经掌握 LRU 算法的思想和实现了,很容易犯错的一点是:处理链表节点的同时不要忘了更新哈希表中对节点的映射。
  • C++代码
struct LRUNode
{
    LRUNode(int key, int val) 
    :key(key)
    ,val(val)
    , pre(nullptr)
    , next(nullptr) 
    {}

    LRUNode(int key, int val, LRUNode* pre, LRUNode* next) 
    :key(key)
    , val(val)
    , pre(pre)
    , next(next) 
    {}

    //类似与双向链表的双指针
    LRUNode* next;
    LRUNode* pre;

    //键值对
    int key, val;
};



class LRUCache {
public:
    LRUCache(int capacity) 
    {
        n = capacity;
        cnt = 0;
        head->pre = tail;
    }
    
    int get(int key) 
    {
        if (mp.count(key) == 0) 
            return -1;

        movefrommid(mp[key]);
        movetohead(mp[key]);
        return mp[key]->val;
    }
    
    void put(int key, int value) 
    {
        if (mp.count(key)) 
        {
            mp[key]->val = value;
            movefrommid(mp[key]);
            movetohead(mp[key]);
        }
        else 
        {
            if (cnt == n) 
                deletetail();
            else 
                ++cnt;
            
            addhead(key, value);
        }
    }

private:
    void movefrommid(LRUNode* mid) 
    {
        LRUNode* l = mid->pre;
        LRUNode* r = mid->next;
        mid->pre = nullptr;
        mid->next = nullptr;
        l->next = r;
        r->pre = l;
    }

    void movetohead(LRUNode* mid) 
    {
        LRUNode* l = head->pre;
        LRUNode* r = head;
        mid->pre = l;
        mid->next = r;
        l->next = mid;
        r->pre = mid;
    }

    void deletetail() 
    {
        LRUNode* l = tail;
        LRUNode* mid = tail->next;
        LRUNode* r = tail->next->next;
        l->next = r;
        r->pre = l;

        mp.erase(mid->key);
        delete mid;
    }

    void addhead(int& key, int& value) 
    {
        LRUNode* l = head->pre;
        LRUNode* r = head;
        LRUNode* mid = new LRUNode(key, value, l, r);
        l->next = mid;
        r->pre = mid;

        mp[key] = mid;
    }

private:
    int n, cnt;
    LRUNode* head = new LRUNode(100, 100);
    LRUNode* tail = new LRUNode(-1, -1, nullptr, head);
    unordered_map<int, LRUNode*> mp;
};

/**
 * Your LRUCache object will be instantiated and called as such:
 * LRUCache* obj = new LRUCache(capacity);
 * int param_1 = obj->get(key);
 * obj->put(key,value);
 */
  • 用C++中STL的list实现
class LRUCache {
public:
    
    LRUCache(int capacity)
    :_capacity(capacity)
    {   
         
    }

    int get(int key) 
    {
        auto it = lru_ump.find(key);

        //如果没有找到
        if(it == lru_ump.end())
        {
            return -1;
        }
        else 
        {
            //根据key获取他在list中对迭代器
            pair<int,int> temp = *lru_ump[key];

            //删除已存在对key
            lru_list.erase(lru_ump[key]);

            //重新插入key到list的前面
            lru_list.push_front(temp);

            //更新key在ump中的位置
            lru_ump[key] = lru_list.begin();

            //返回value
            return temp.second;
        }
    }

    void put(int key, int value) 
    {
        auto it = lru_ump.find(key);
         
        //如果没找到了
        if(it == lru_ump.end())
        {
            //如果list已经满了,需要淘汰key
            if(lru_list.size() == _capacity)
            {
                //取list中最后一个
                auto temp = lru_list.back();

                //分别在ump和list中删除
                lru_ump.erase(temp.first);
                lru_list.pop_back();
            }
            //插入新数据key在list的前面
            lru_list.push_front(pair<int ,int >(key,value));

            //ump中插入新数据key在list中的位置迭代器
            lru_ump[key] = lru_list.begin();
        }
        //找到了,就换到list的队头
        else 
        {
            //删除list的旧位置值
            lru_list.erase(lru_ump[key]);

            //list中插入在list的头部
            lru_list.push_front(make_pair(key,value));

            //更新在ump中的迭代器值
            lru_ump[key] = lru_list.begin();
        }
    }

private:
    int _capacity;
    //哈希表,注意第二个是list的迭代器,代表key在list中的位置
    unordered_map<int,list<pair<int ,int>>::iterator> lru_ump;

    //双向链表
    list< pair<int ,int>>lru_list;
};

参与评论 您还未登录,请先 登录 后发表或查看评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:编程工作室 设计师:CSDN官方博客 返回首页

打赏作者

wolf鬼刀

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值