架构师老狼
码龄13年
关注
提问 私信
  • 博客:91,349
    91,349
    总访问量
  • 57
    原创
  • 360,213
    排名
  • 42
    粉丝
  • 0
    铁粉

个人简介:资深架构师,专注于区块链、微服务、大数据研究!坚定信念,乐观心态,永不止步!

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:四川省
  • 加入CSDN时间: 2012-07-09
博客简介:

架构师老狼

博客描述:
资深架构师,专注于区块链、微服务、大数据研究!坚定信念,乐观心态,永不止步!
查看详细资料
个人成就
  • 获得39次点赞
  • 内容获得28次评论
  • 获得257次收藏
  • 代码片获得214次分享
创作历程
  • 3篇
    2023年
  • 5篇
    2022年
  • 24篇
    2021年
  • 2篇
    2020年
  • 7篇
    2019年
  • 8篇
    2018年
  • 9篇
    2017年
成就勋章
TA的专栏
  • spring boot
    7篇
  • 据机器学习
    10篇
  • 区块链
    3篇
  • 加密算法
    2篇
  • iceberg
    1篇
  • flink
    5篇
  • spark
    5篇
  • mysql
    2篇
  • OLAP
    2篇
  • 互联网医疗
    1篇
  • 元数据管理
    1篇
  • 数据仓库
    2篇
  • elasticsearch
    1篇
  • spring cloud
    9篇
  • 机器学习
    7篇
  • ffmpeg
    1篇
  • hadoop
    13篇
  • 架构设计
    17篇
  • 随笔
    3篇
兴趣领域 设置
  • 大数据
    hadoophiveredissparkflink大数据
  • 后端
    spring架构
  • 搜索
    elasticsearch
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

区块链基础之密码学及安全技术

本质上,同态加密是指这样一种加密函数,对明文进行环上的加法和乘法运算再加密,与加密后对密文进行相应的运算,结果是等价的。具有同态性质的加密函数是指两个明文a、b满足Dec(En(a)⊙En(b))=a⊕b的加密函数,其中En是加密运算,Dec是解密运算,⊙、⊕分别对应明文和密文域上的运算。,mk),或写成:f(En(m1),En(m2),…,En(mk))=En(f(m1,m2,…口令的安全性:仅将口令的哈希值进行保存,进行口令检验时仅需对比哈希值即可,即使攻击者获取了口令的哈希值,也无法计算出口令。
原创
发布博客 2023.06.24 ·
2710 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

区块链基础之共识机制

区块链上的共识机制主要解决由谁来构造区块,以及如何维护区块链统一的问题。
原创
发布博客 2023.06.04 ·
1949 阅读 ·
0 点赞 ·
1 评论 ·
3 收藏

Fabric架构详解

1 整体架构2 运行架构Fabric CA(可选)peer:主节点模块,负责存储区块链数据,运行维护链码orderer:交易打包,排序模块cryptogen:组织和证书等资料生成模块configtxgen:生成用于通道配置的文件和创世区块等configtxlator:负责解析格式化后的区块和交易文件3 网络运行流程4 交易流程5 共识过程
原创
发布博客 2023.05.27 ·
375 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

区块链应用:椭圆曲线数字签名算法ECDSA

椭圆曲线数字签名算法,因其高安全性,目前已广发应用在比特币、以太坊、超级账本等区块链项目中。
原创
发布博客 2022.09.07 ·
3105 阅读 ·
0 点赞 ·
0 评论 ·
10 收藏

Spark+Flink+Iceberg打造湖仓一体架构实践探索

数据湖-大数据生态杀青数据仓库的痛点只能存储结构化数据,无法采集存储非结构化数据无法存储原始数据,所有的数据须经过ETL清洗过程离线数仓的数据表牵一发而动全身,数据调整工程量大实时数仓存储空间有限,无法采集和存储海量实时数据回溯效率低下,实时数据和离线数据计算接口难以统一Kafka 做实时数仓,以及日志传输。Kafka 本身存储成本很高,且数据保留时间有时效性,一旦消费积压,数据达到过期时间后,就会造成数据丢失且没有消费到将实时要求不高的业务数据入湖、比如说能接受 1-10 分钟的延迟。因
原创
发布博客 2022.03.16 ·
5797 阅读 ·
1 点赞 ·
2 评论 ·
14 收藏

2022 Mysql优化来一波

1 redo log(重做日志)1)InnoDB首先将redo log放入到redo log buffer,然后按一定频率将其刷新到redo log file。下列三种情况下会将redo log buffer刷新到redo log file:Master Thread每一秒将redo log buffer刷新到redo log file每个事务提交时会将redo log buffer刷新到redo log file当redo log缓冲池剩余空间小于1/2时,会将redo log buffer刷新
原创
发布博客 2022.01.27 ·
1256 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

clickhouse 21.x生产实践优化

1 时间字段类型建表时能用数值型或日期时间型表示的字段就不要用字符串,全String 类型在以Hive(hbase)为中心的数仓建设中常见,但 ClickHouse 环境不应受此影响。虽然 ClickHouse 底层将DateTime 存储为时间戳Long类型,但不建议存储Long 类型,因为DateTime 不需要经过函数转换处理,执行效率高、可读性好。2 Nullable类型官方已经指出Nullable 类型几乎总是会拖累性能,因为存储Nullable 列时需要创建一个额外的文件来存储 N.
原创
发布博客 2022.01.23 ·
1786 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

2021 个人成长复盘

感恩2021,畅想202201 工作复盘过去的一年里,你能往简历中浓妆艳抹地写几笔吗?你学了什么新的技术?做了什么大的项目?取得了什么成绩?获得了什么认可?这一年你进步了多少?02 学习复盘你看了多少本书?听了多少堂课?列一个书单和课单看一看。你有没有考取什么认证或资质?你有没有掌握新的学习方法或学习途径?03 财富复盘你全年的收入和支出,你一年下来的结余和存款,你的睡后收入,注意不是纳税的税,是你闭着眼睛睡大觉也有钱进来的睡后收入,你有什么样的规划?04 健康复盘你的身体健康状况如何?如
原创
发布博客 2022.01.07 ·
428 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

微服务治理系列二

注册中心Nacos1 主流注册中心对比2 CAP实践C是所有节点在同一时间看到的数据是一致的;而A的定义是所有的请求都会收到响应。何时选择使用何种模式?如果不需要存储服务级别的信息且服务实例是通过nacos-client注册,并能够保持心跳上报,那么就可以选择AP模式。当前主流的服务如 Spring cloud 和 Dubbo 服务,都适用于AP模式,AP模式为了服务的可能性而减弱了一致性,因此AP模式下只支持注册临时实例。如果需要在服务级别编辑或者存储配置信息,那么 CP 是必须,K8S服
原创
发布博客 2021.12.31 ·
1798 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

微服务治理系列一

响应式编程:1 spring mvc与spring webflux两个框架都可以使用注解方式,都运行在 Tomet 等容器中;SpringMVC 采用命令式编程,Webflux 采用异步响应式编程SpringMVC 方式实现,同步阻塞的方式,基于 SpringMVC+Servlet+Tomcat;SpringWebflux 方式实现,异步非阻塞 方式,基于 SpringWebflux+Reactor+Netty2 响应式编程(Reactor 实现)响应式编程操作中,Reactor 是满足 R
原创
发布博客 2021.12.30 ·
393 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Spark ML处理样本类别不均衡问题

样本类别分布不均衡导致的危害?样本类别不均衡将导致样本量少的分类所包含的特征过少,并很难从中提取规律;即使得到分类模型,也容易产生过度依赖与有限的数据样本而导致过拟合问题,当模型应用到新的数据上时,模型的准确性会很差解决类别不平衡数据1 过采样代表性算法-SMOTE1.1 算法思想为了解决随机过采样中造成模型过拟合问题,⼜能保证实现数据集均衡的⽬的,出现了过采样法代表性的算法SMOTE 算法。SMOTE算法是对随机过采样⽅法的⼀个改进算法,由于随机过采样⽅法是直接对少数类进⾏重采⽤,会使
原创
发布博客 2021.12.21 ·
1443 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

医疗机构数字化转型 -无纸化诊疗产品思维

1 纸质化医疗行业痛点《医疗机构管理条例实施细则》“门诊病历的保存期不得少于15年;住院病历的保存期不得少于30年”《电子病历应用管理规范》“有条件的医疗机构电子病历系统可以使用电子签名进行身份认证,可靠的电子签名与手写签名或盖章具有同等的法律效力”2 无纸化医疗解决方案2.1 应用全场景2.2 可信度卫生部于 2010 年发布了《卫生系统电子认证服务管理办法》,从行业角度提出使用电子认证服务保障卫生信息系统安全,满足卫生信息系统在身份认证、授权管理、责任认定等方面的信息安全需求。
原创
发布博客 2021.11.26 ·
524 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

clickhouse 20.x实践小计

1 列式存储与行式存储对比采用行式存储时,数据在磁盘上的组织结构为:好处是想查某个人所有的属性时,可以通过一次磁盘查找加顺序读取就可以。但是当想查所有人的年龄时,需要不停的查找,或者全表扫描才行,遍历的很多数据都是不需要的。采用列式存储时,数据在磁盘上的组织结构为:这时想查所有人的年龄只需把年龄那一列拿出来就可以了对于列的聚合,计数,求和等统计操作原因优于行式存储。由于某一列的数据类型都是相同的,针对于数据存储更容易进行数据压缩,每一列选择更优的数据压缩算法,大大提高了数据的压缩比重。由
原创
发布博客 2021.11.25 ·
438 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

kafka优化笔记

1 mq的作用解耦、异步、削峰填谷2 kafka架构1)Producer :消息生产者,就是向 kafka broker 发消息的客户端;2)Consumer :消息消费者,向 kafka broker 取消息的客户端;3)Consumer Group (CG):消费者组,由多个 consumer 组成。消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费;消费者组之间互不影响。所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。4)Broker :一台
原创
发布博客 2021.11.14 ·
133 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

spark3.x 生产调优笔记

1 spark sql写入mysql非常慢有这样一个业务场景:需要将通过Spark处理之后的数据写入MySQL,并在在网页端进行可视化输出。Spark处理之后有大概40万条数据,写入MySQL却要耗费将近30分钟,这也太慢了!后来翻看了Spark向JDBC数据源写数据的那部分源码,虽然源码中的实现使用的确实是 PreparedStatement 的addBatch()方法和executeBatch()方法,但是我们再去翻看executeBatch()方法的实现后发现,它并不是每次执行一批插入,而是循环
原创
发布博客 2021.11.05 ·
1483 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

元数据管理理论

1 为什么需要数据治理?通过数据治理实现企业数据的标准化、提高数据质量、提升业务处理的效率,为数据分析提供准确的数据支撑,赋能业务,助力企业实现数字化转型。2 数据治理的本质数据要产生价值,需要一个合理的“业务目标”,数据治理的所有活动应该围绕真实的业务目标而开展,建立数据标准、提升数据质量只是手段,而不是目标。因此数据治理的第一步不是分析数据问题,而是分析业务问题,找到企业的核心业务诉求,定义数据治理的目标和范围。3 数据治理架构在DAMA 数据管理知识体系指南中,数据治理位于数据
原创
发布博客 2021.10.22 ·
874 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

hive3.x on spark3.0生产调优实践

1 数据倾斜绝大部分任务都很快完成,只有一个或者少数几个任务执行的很慢甚至最终执行失败,这样的现象为数据倾斜现象。将数据倾斜分为单表携带了 GroupBy 字段的查询和两表(或者多表)Join 的查询。1.1 单表数据倾斜优化1.1.1 Map 端进行聚合 - GroupBy 操作同时聚合函数为 count 或者 sumset hive.map.aggr = true;set hive.groupby.mapaggr.checkinterval = 100000;set hive.grou
原创
发布博客 2021.09.16 ·
1207 阅读 ·
3 点赞 ·
2 评论 ·
10 收藏

Hadoop3.x生产环境调优之高可用

1 hadoop HA高可用实现高可用最关键的策略是消除单点故障。HA严格来说应该分成各个组件的HA机制:HDFS的HA和YARN的HA。前提:配置zookeeper集群1.1 HDFS HA 高可用工作机制元数据管理方式需要改变:内存中各自保存一份元数据;Edits日志只有Active状态的NameNode节点可以做写操作;两个NameNode都可以读取Edits;共享的Edits放在一个共享存储中管理(journal和NFS两个主流实现);需要一个状态管理功能模块:实现了一个zkfai
原创
发布博客 2021.09.13 ·
378 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Flink分布式缓存

分布式缓存Flink提供了一个分布式缓存,类似于hadoop,可以使用户在并行函数中很方便的读取本地文件,并把它放在taskmanager节点中,防止task重复拉取。 此缓存的工作机制如下:程序注册一个文件或者目录(本地或者远程文件系统,例如hdfs或者s3),通过ExecutionEnvironment注册缓存文件并为它起一个名称。 当程序执行,Flink自动将文件或者目录复制到所有taskmanager节点的本地文件系统,仅会执行一次。用户可以通过这个指定的名称查找文件或者目录,然后从taskma
原创
发布博客 2021.07.09 ·
365 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Flink检查点机制与状态管理

1 检查点机制1.1 CheckPoints为了使 Flink 的状态具有良好的容错性,Flink 提供了检查点机制 (CheckPoints) 。通过检查点机制,Flink 定期在数据流上生成 checkpoint barrier ,当某个算子收到 barrier 时,即会基于当前状态生成一份快照,然后再将该 barrier 传递到下游算子,下游算子接收到该 barrier 后,也基于当前状态生成一份快照,依次传递直至到最后的 Sink 算子上。当出现异常后,Flink 就可以根据最近的一次的快照数据
原创
发布博客 2021.07.07 ·
1235 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏
加载更多