Wonder233的学习博客

追赶时间的尾巴

【caffe学习笔记】layer层简介

layer层的作用 Caffe十分强调网络的层次性,数据输入,卷积,非线性变换(ReLU等),网络连接,损失函数计算等操作都由一个Layer来实现。 layer是网络的基本单元,由此派生出各种层类。创建一个caffe模型只需要定义一个prototxt文件即可。也可以通过修改layer或增加自己la...

2017-02-28 09:47:11

阅读数:429

评论数:0

【caffe学习笔记】Common Layers 普通层

内积/全连接 Inner Product InnerProduct 层(也被称作全连接层)将输入看成一个一向量,输出也为向量(输出 blob的高和宽都为1)。 层类型: InnerProductCPU 实现码: ./src/caffe/layers/inner_product_layer....

2017-02-28 09:45:39

阅读数:406

评论数:0

【caffe学习笔记】loss layer 损失层

Loss 设置了一个损失函数用来比较网络的输出和目标值,通过最小化损失来驱动网络的训练。 网络的损失通过前向操作计算,网络参数相对于损失函数的梯度则通过反向操作计算。 Softmax 损失 层类型: SoftmaxWithLoss softmax 损失层一般用于计算多类分类...

2017-02-28 09:44:02

阅读数:1870

评论数:0

【caffe学习笔记】Data Layers 数据层

数据能过数据层进入 caffe 网络:数据层处于网络的最底层。 数据可以从高效率的数据库中读取(如LevelDB或LMDB), 可以直接从内存中读取, 若对读写效率要求不高也可以从硬盘上的HDFT文件或者普通的图片文件读取。 常见的数据预处理操作(减均值,尺度变换,随机裁剪或者镜像)可...

2017-02-28 09:42:12

阅读数:636

评论数:0

【caffe学习笔记】Activation / Neuron Layers 激活层

一般来说,激活层执行逐个元素的操作, 输入一个底层 blob, 输出一个尺寸相同的顶层 blob。 在以下列出的这些层中,我们将忽略输入和输出 blob 的尺寸,因为它们是相同的: 输入: n * c * h * w输出: n * c * h * w ReLU / Rectif...

2017-02-28 09:41:18

阅读数:402

评论数:0

【caffe学习笔记】vision layer 特征表达层

vision layer 特征表达层 Header: ./include/caffe/vision_layers.hpp 特征表达层通常将图像作为输入,并产生其他图像作为输出。 vision_layer主要是图像卷积的操作,像convolusion、pooling、LRN都在里面。 典型“im...

2017-02-28 09:37:43

阅读数:714

评论数:0

【caffe学习笔记】CNN网络配置文件

CNN网络配置文件 Imagenet_solver.prototxt (包含全局参数的配置的文件)Imagenet.prototxt (包含训练网络的配置的文件)Imagenet_val.prototxt (包含测试网络的配置文件)

2017-02-28 09:36:33

阅读数:308

评论数:0

【caffe-windows】在windows下编译caffe出现的问题

1、caffe-windows的编译无法找到data_reader.cpp? 项目配置中索引了并不存在的源文件 data_reader.cpp和data_reader.hpp,在项目中移除这两个文件就可以了。 两文件位置:在libcaffe的src以及include里面索引。 2、 E:\Nug...

2017-02-27 21:10:53

阅读数:1748

评论数:0

Caffe中每一层的参数配置

数据层(Data) layers { name: "data" type: DATA top: "data" top: "label" data_param { source: "../data/Im...

2017-02-25 15:22:59

阅读数:683

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭