wonderful_hdb
码龄8年
关注
提问 私信
  • 博客:6,557
    6,557
    总访问量
  • 11
    原创
  • 1,830,549
    排名
  • 5
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2016-11-30
博客简介:

wonderful_boy的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    2
    当前总分
    144
    当月
    0
个人成就
  • 获得6次点赞
  • 内容获得5次评论
  • 获得35次收藏
创作历程
  • 6篇
    2023年
  • 2篇
    2022年
  • 3篇
    2021年
成就勋章
TA的专栏
  • 论文解读
    7篇
  • Diffusion Models 10 篇必读论文
    5篇
  • 算法
    3篇
  • 论文复现
    1篇
兴趣领域 设置
  • 人工智能
    opencvpytorch
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Diffusion Models 10 篇必读论文(4)Classifier-Free Diffusion Guidance

经过 DDPM 和 DDIP 和 classifier-guided diffusion model 等技术的发展,diffusion model 生成的效果已经可以超越 GANs,称为一种生成模型的直流。尤其是 classifier-guided diffusion model 可以让生成图像的效果在多样性(FID)和真实度(IS)中权衡取舍。
原创
发布博客 2023.12.13 ·
880 阅读 ·
2 点赞 ·
1 评论 ·
8 收藏

Diffusion Models 10 篇必读论文(3)Classifier-guided Diffusion Model

目前生成模型有好几种,包括 GANs 和 likelihood-based models 等,目前在生成任务上,依然是 GANs 取得最好的效果,但 GANs 难以训练和扩展,限制了其应用。虽然 diffusion model 近几年有了大的发展,但在生成任务上,比较 GANs 还是略逊一筹。
原创
发布博客 2023.11.27 ·
440 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Diffusion Models 10 篇必读论文(2)DDIM

DDMP 中把正向扩散和逆扩散以及生成(采样)过程都看成是一个马尔科夫链,每一步扩散都与上一步产生的数据有关。因为是在近似拟扩散过程,所以每一步的扩散率必须要取值很小,故扩散步数取值必须要大(比如T=1000),而导致模型执行耗时过大。DDIM则通过观察优化目标中的特性,在满足和DDPM 同样的边缘分布下,提出了非马尔科夫过程来进行生成(采样),从而大幅度加速了模型,并且还具有生成一致性。
原创
发布博客 2023.10.19 ·
407 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Diffusion Models 10 篇必读论文(1)DDPM

前一篇介绍了 diffusion model 的设计灵感和主要的思想。这篇沿用了之前的想法,用一个马尔科夫链来构成一个生成模型,训练是是把原始分布逐步扩散到一个噪声分布,然后学习其逆扩散的过程。不同的是此处把模型的逆扩散过程更加形象地看成是去噪过程(DDPM),并优化了训练目标,使得训练和生成过程更加清晰简洁,后面很多论文都是基于这篇论文优化发展的。
原创
发布博客 2023.09.24 ·
751 阅读 ·
2 点赞 ·
1 评论 ·
5 收藏

Diffusion Models 10 篇必读论文(0)DPM

Diffusion Models 是近期人工智能领域最火的方向,也衍生了很多实用的技术。最近开始整理了几篇相关的经典论文,加上一些自己的理解和公式推导,分享出来和大家一起学习,欢迎讨论:702864842(QQ),https://github.com/Huangdebo
原创
发布博客 2023.09.18 ·
389 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

Ultra Fast Deep Lane Detection V2

这篇文章提出了一个超快车道线检测,区别于之前基于分割和回归的模型,该模型把车道线检测看车是分类问题,而且使用了全连接层,加强了模型的全局感知能力。另外,本文还设计了一个混合锚点机制,对不同的车道使用不用的锚点,很好地解决了两侧车道检测性能不佳的问题。该模型在兼顾了速度的前提下,还很好地处理了遮挡和暗光等情况,取得了不错的性能。
原创
发布博客 2023.09.16 ·
345 阅读 ·
1 点赞 ·
2 评论 ·
2 收藏

SMOKE window 版

修改开源的 3D 检测算法,使用了 pytorch 自带的 DConv,省去 linux 下编译 DConv 的 cuda 代码,可以直接在 window 下训练和测试。在源码基础上增加了 finetune 和 resume 等功能,并提供了重新训练的模型
原创
发布博客 2022.12.21 ·
127 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

Open-Set Object Detection and Discovery (OSODD)

最近因为工程需要,就去调研一下 open-set detection 算法,然后发现一篇不错的论文 《Towards Open-Set Object Detection and Discovery》。论文使用了额外的 memory 来当做网络的记忆缓存,在实现对未知类物体的坐标回归的同时,还挖掘了未知类物体潜在的类别。算法挺有意思的,里面也涉及了很多自己的知识盲点,于是和大家分享一下,一起研究研究。1.介绍在之前的 open-set object detection (OSOD) 中,除了检测识别已知物
原创
发布博客 2022.05.05 ·
806 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

manacher 算法

看了很多网上的解析,都是只讲解了过程,没有详细讲到为什么,开始看的时候容易云里雾里。Manacher 算法的核心思想是利用前面已经用中心扩散法寻找的回文子串的对称性来加速,也可以说是有点动态规划的意思,利用之前得到子串信息来确定当前的信息。因为回文子串可能的长度可能是单数也可能是双数,为了统一起来,就在原串的开头和结尾以及每个字符之间添加上“#”,这个很好理解,就不再详细讲解。先设定一些变量:s:加了“#”的字符串i:当前字符串的位置right:目前找到的回文子串的最远右边界(这个回文子串的右边界最
原创
发布博客 2021.12.31 ·
269 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

余弦退火从启动学习率机制

余弦退火从启动学习率机制【导语】主要介绍 ** 在pytorch 中实现了余弦退火从启动学习率机制,支持 warmup 和 resume 训练。并且支持自定义下降函数,实现多种重启动机制。代码: https://github.com/Huangdebo/Confluence1. 多 step 重启动设定 cawb_steps 之后,便可实现多步长余弦退火重启动学习率机制。每次重启动时,开始学习率会乘上一个比例因子 step_scale。2. 正常余弦退火机制如果 cawb_steps 为 [
原创
发布博客 2021.09.27 ·
1655 阅读 ·
0 点赞 ·
0 评论 ·
12 收藏

Confluence

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection【导语】主要介绍 Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 这篇论文的原理,并复现了算法。觉得有些地方原文没有讲的很明白,在复现过程中才搞懂。不过目前复现算法的运行速度较慢,如果哪位小伙伴有更好的复现,记得
原创
发布博客 2021.01.27 ·
453 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏