乞丐Windows笔记本学Yolo-Yolo源码编译、部署、Python调用
前言:本人穷,乞丐,无GPU,windows10破本一台,在此记录一下学习、部署、使用YOLO笔记
本文将描述描述内容:
- 如何完成Yolo源码编译
- 使用Yolo对图片测试识别定位效果
- Python调用编译产物实现图像、视频目标定位,检测
1、啥是Yolo
文笔不好这里引用一位知乎大佬原话
YOLO 是时下最流行(state of the art)的物体检测(Object Detection) AI 模型之一,流行的原因是因为好用,好用的标准归纳为3条:
- 检测范围广:YOLO9000 覆盖了9000种常用分类,YOLOv2 覆盖了PASCAL VOC和COCO数据集分类。(说人话:就是可以检测出9000种常见物体)
- 检测准确率高
- 检测速度快:平民玩家用普通CPU就能运行低配乞丐版(Tiny YOLO),人民币玩家用GPU运行高配豪华版 (YOLOv2)。作者大神给出的参考值是 Tiny YOLO 可以达到200FPS,YOLOv2 达到40FPS,当然这是用 NVIDIA Titan X 传奇装备跑出来的分数。
*PASCAL VOC 和 COCO 数据集是什么?*数据集由成千上万张图片组成,AI通过学习数据集图片中包含的物体以及该物体的分类,最终能达到正确识别所有图片中的物体所属的分类。PASCAL VOC 和 COCO 是两个有名的图片物体分类数据集,同样有名的还有 ImageNet 数据集。
*200FPS 是什么?*可以理解为一秒钟处理200张图片,普通视频24FPS肉眼就不会感到卡顿
2、准备OpenCV
安装opencv依赖,安装3.+的,别出啥幺蛾子,能支持更多格式的图像,并且得到实时的显示,opencv使用用源码安装,熟悉一下
github https://github.com/opencv/opencv/tree/3.4
访问费劲,还是从镜像取吧
code china https://codechina.csdn.net/opencv/opencv.git
分支切好,别去最新版的opencv了
THinK@LAPTOP-OBP0I7V8 MINGW64 /d/test/yolo_learn/opencv (3.4.15)
$ git branch
* 3.4.15
master
先给自己电脑装个CMAKE,链接里找到windows平台的msi下载下来双击安装即可,我下的是 cmake-3.20.0-windows-x86_64.msi,版本无所谓了,能用就行
-
在opencv目录下新建build目录,打开cmake-gui
- 1位置选在下载的opencv源码目录,我的是 D:\test\yolo_learn\opencv
- 2位置选在刚刚新建的build目录,我的是 D:\test\yolo_learn\opencv\build
- 3根据自己的vs版本和电脑选,我的如截图


-
Finish点完后,等下面的结果,得一小会

-
点击generate,出现如下语句,项目生成成功,在build文件夹下出现 项目文件 OpenCv.Sln
-----------------------------------------------------------------
Configuring done
Generating done

-
右键ALL_BUILD生成

-
右键INSTALL,仅用于项目->仅生成INSTALL

-
这一番折腾就是为了给Darknet提供这个,生成的install目录, D:\test\yolo_learn\opencv\build\install

3、Yolo源码获取
- Yolo是一种物体检测模型,按照模型可以自由使用各种语言搭建。比如Python的Tensorflow实现,C和CUDA等等。
个人看到网上最火的应该是
Darknet: Open Source Neural

本文详细介绍了在Windows笔记本上编译YOLO源码、准备OpenCV环境、Python调用编译后的YOLO进行物体检测的过程。通过编译Darknet框架,实现在没有GPU的情况下进行目标检测,并提供了Python接口调用示例。
最低0.47元/天 解锁文章
1036

被折叠的 条评论
为什么被折叠?



