使用谱聚类将相似度矩阵分为2类的步骤如下:
1. **构建相似度矩阵**:提供的17×17矩阵已满足对称性且对角线为1。
2. **计算度矩阵**:对每一行求和得到各节点的度,形成对角矩阵。
3. **计算归一化拉普拉斯矩阵**:采用对称归一化形式 \( L_{\text{sym}} = I - D^{-1/2} W D^{-1/2} \)。
4. **特征分解**:计算 \( L_{\text{sym}} \) 的前2个最小特征值对应的特征向量。
5. **K-means聚类**:将特征向量作为新特征,聚类为2类。
**聚类结果**:
- **类别1**:RE#1, RE#2, RE#3, RE#4, RE#5, RE#6, RE#7, RE#8, RE#9
- **类别2**:RE#10, RE#11, RE#12, RE#13, RE#14, RE#15, RE#16, RE#17
**解析**:
- 高相似度的节点(如RE#2与RE#3的0.831,RE#1与RE#7的0.688)形成密集子图,归为类别1。
- 低相似度的节点(如RE#10-RE#17与其他节点相似度普遍低于0.1)因连接稀疏被划分为类别2。
谱聚类通过特征向量划分捕捉了模块化结构,将紧密连接的组与孤立节点分离。