Poj 3140 Contestants Division (DP_树形DP)

题目链接:http://poj.org/problem?id=3140

题目大意:给定一棵n棵节点的树,求删去某条边后两个分支的最小差异值。

解题思路:树形DP.深搜两次,第一次深搜记录从当前节点的子孙节点总数(包括自己),第一次算预处理,复杂度为O(N),第二次利用第一次的结果找去掉某条边后的最小差异值,答案需用__int64。其实一切皆模拟,这题只是模拟地比较有规律而已。


测试数据:

7 6
2 2 2 2 2 2 2
1 2
2 7
3 7
4 6
6 2
5 7
0 0


代码:
#include <stdio.h>
#include <string.h>
#define MAX 110000
#define min(a,b) (a)<(b)?(a):(b)
#define Rabs(a)  (a<0?-a:a)
#define int64 __int64
#define INF 21474836470000000


struct node {

	int v;
	node *next;
}*head[MAX],tree[MAX*2];
int n,m,ptr,val[MAX],vis[MAX];
int64 dp[MAX],ans,cnt,sum;


void Initial() {

	ans = INF;
	sum = ptr = 0;
	memset(vis,0,sizeof(vis));
	memset(head,NULL,sizeof(head));
}
void AddEdge(int x,int y) {

	tree[ptr].v = y;
	tree[ptr].next = head[x],head[x] = &tree[ptr++];
	tree[ptr].v = x;
	tree[ptr].next = head[y],head[y] = &tree[ptr++];
}
void Dfs_Ini(int s,int pa) {
	//自底向上计算每个节点的子孙个数
	dp[s] = val[s];
	vis[s] = 1;
	node *p = head[s];


	while (p != NULL) {

		if (vis[p->v] == 0) {

			Dfs_Ini(p->v,s);
			dp[s] += dp[p->v];
		}
		p = p->next;
	}
}
void Dfs_Solve() {

	for (int i = 1; i <= n; ++i) {
		//枚举每一条边
		node *p = head[i];
		while (p != NULL) {
			
			int64 tp = dp[p->v];
			ans = min(ans,Rabs((2 * tp - sum)));
			p = p->next;
		}
	}
}


int main()
{
	int i,j,k,a,b,cas = 0;



	while (scanf("%d%d",&n,&m),n+m) {
	
		Initial();
		for (i = 1; i <= n; ++i)
			scanf("%d",&val[i]),sum += val[i];
		for (i = 1; i <= m; ++i) {

			scanf("%d%d",&a,&b);
			AddEdge(a,b);
		}


		Dfs_Ini(1,0);			//第一次深搜,记录当前节点的子孙总数
		memset(vis,0,sizeof(vis));
		Dfs_Solve();			//更新答案
		printf("Case %d: %I64d\n",++cas,ans);
	}
}


本文ZeroClock原创,但可以转载,因为我们是兄弟。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值