Hdu 4283 You Are the One (DP_区间DP)

题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4283


题目大意:给定一个序列,序列内的人有屌丝值Di,是第然后将这个序列进栈,第i个人如果是第k个出栈,那么最后的屌丝总值增加Di * (k-1), 求一个出栈序列使得总屌丝值最小。


解题思路:2012年天津网赛的1006题,当时不会做,因为一直想着记录栈里面的状态,也就是谁谁谁在栈里面,然后就想着用bitset什么的,然后就没有然后了.

    言归正传,本题的模型是求一个合法的出栈序列使得屌丝总值最小,需要用区间DP解决之。合法的出栈序列中有一个很重要的性质:[1,n]这是一开始的所有元素,当1第k个出栈时[2,k]肯定比1先出栈,[k+1,n]肯定比1后出栈,正因为只要1才能第k个出栈.。这样一个区间划分成两个子区间[2,k],[k+1,n],就这样递归下去只到区间长度为1.而区间DP正是解决这类区间划分问题的利器,其实区间DP也就是一种思想啦。

    区间DP一般有两种写法,三个for循环或者记忆化搜索,个人觉得记忆化搜索虽然效率低点,但是写起来相当优美。

    本题我写的for循环写法是参照cxlove的写法,把当前选择对后续选择的影响给提前计算了,这也是区间Dp经常用到的技巧。而记忆化搜索写法在搜索的过程中都只考虑当前的影响,因为多了一维,所以可以这样,如果开两维,就必须将后续影响考虑在内了.


测试数据:

InPut:
10
5
1 2 3 4 5

5 4 3 2 2
100
41 67 34 0 69 24 78 58 62 64 5 45 81 27 61 91 95 42 27 36 91 4 2 53 92 82 21 16
18 95 47 26 71 38 69 12 67 99 35 94 3 11 22 33 73 64 41 11 53 68 47 44 62 57 37
59 23 41 29 78 16 35 90 42 88 6 40 42 64 48 46 5 90 29 70 50 6 1 93 48 29 23 84
54 56 40 66 76 31 8 44 39 26 23 37 38 18 82 29 41

OutPut:
Case #1: 20
Case #2: 24
Case #3: 170975


C艹代码:

#include <stdio.h>
#include <string.h>
#define MAX 104
#define INF (1<<29)
#define min(a,b) ((a)<(b)?(a):(b))


int n,ans,arr[MAX];
int dp[MAX][MAX][MAX];


int Solve_DP(int s,int e,int k) {
	//s是区间头,e是区间尾,k表示第i个人第k个出栈
	if (s == e) return arr[s] * (k - 1);
	if (s > e)  return 0;
	if (dp[s][e][k] != INF) return dp[s][e][k];	

	
	
	int i,first,second;
	int cur,thisk,nextk;
	for (i = s; i <= e; ++i) {					//区间分成两部分,[s,i]和[i+1,e]
		
		nextk = k + (i - s) + 1;				//[i+1,e]区间内第i个人第nextk个出栈
		thisk = k + (i - s);					//[s,i]区间的第s个人第thisk个出栈
		first = Solve_DP(s+1,i,k);				//第1个区间经过分配得到最少屌丝值
		second = Solve_DP(i+1,e,nextk);			//第2个区间经过分配得到的最少屌丝值
		cur = arr[s] * (thisk - 1);				//第s个人第thisk出栈增加的屌丝值
		dp[s][e][k] = min(dp[s][e][k],first+second+cur);
	}


	return dp[s][e][k];
}


int main()
{
	int i,j,k,t,cas = 0;
	
	
	scanf("%d",&t);
	while (t--) {
		
		scanf("%d",&n);
		for (i = 1; i <= n; ++i)
			scanf("%d",&arr[i]);
		
		
		for (i = 1; i <= n; ++i)
			for (j = 1; j <= n; ++j)
				for (k = 0; k < n; ++k)
					dp[i][j][k] = INF;
				
				
		ans = Solve_DP(1,n,1);
		printf("Case #%d: %d\n",++cas,ans);
	}
}

#include <stdio.h>
#include <string.h>
#define MAX 104
#define INF (1<<29)
#define min(a,b) ((a)<(b)?(a):(b))


int n,ans,arr[MAX];
int dp[MAX][MAX],sum[MAX];


int Solve_DP() {
	
	int i,j,k,len,end,tp;

	
	for (len = 1; len < n; ++len)						//枚举区间长度
		for (i = 1; i + len <= n; ++i) {				//枚举区间头

			end = i + len;								//i为区间头,end为区间尾
			for (k = i ; k <= end; ++k) {				//第k个出栈
				
				tp = arr[i] * (k-i);					//因为i-1以前的可以不考虑,所以把第i个人当做是第一个出栈的人
				tp += dp[i+1][k] + dp[k+1][end];		//把区间分成[i+1,k]和[k+1][en]
				tp += (k - i + 1) * (sum[end] - sum[k]);//重要的性质,如果第i个人第k个出栈,那么后面的人出栈顺序都大于k
				dp[i][end] = min(dp[i][end],tp);
			}	
		}


	return dp[1][n];
}


int main()
{
	int i,j,k,t,cas = 0;
	
	
	scanf("%d",&t);
	while (t--) {
		
		scanf("%d",&n);
		for (i = 1; i <= n; ++i) {
		
			scanf("%d",&arr[i]);
			sum[i] = sum[i-1] + arr[i];
		}
		
		
		memset(dp,0,sizeof(dp));
		for (i = 1; i <= n; ++i)
			for (j = i + 1; j <= n; ++j)
				dp[i][j] = INF;
				
				
		ans = Solve_DP();
		printf("Case #%d: %d\n",++cas,ans);
	}
}

本文ZeroClock原创,但可以转载,因为我们是兄弟。

  • 5
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值