各位客官好,这里是我说风俗,大家点点赞,收收藏,各位的支持是我持续更新的动力【》-《】
1. 时间复杂度
2. 空间复杂度
1. 时间复杂度
定义:在计算机科学中,算法的时间复杂度是一个函数式T(N),它定量描述了该算法的运行时间。
时间复杂度是衡量程序的时间和效率,那为什么不去计算程序的运行时间呢?
1. 因为程序运行时间和编译环境和运行机器的配置都有关系,比如一个算法程序,用一个老编译器进行编译和新编译器编译,在同一个机器上,运行时间不足。
2. 同一个算法程序,低配和高配机器,运行时间不同。
3. 并且时间只能运行后测试,不能写之前通过理论计算评估。
那么算法时间复杂度函数式T(N)到底是什么呢?这个T(N)函数式计算了程序的运行次数。假设每句指令执行的时间基本一样(实际中有微乎其微的差别),那么执行次数和运行时间比就是正相关,这样也脱离了具体的编译环境。执行次数就可以代表时间效率的优劣。比如解决一个问题的算法a程序T(N)=N,算法b程序T(N)=N^2,那么a的算法一定大于b。
Func1执行的基本操作次数:
T(N) = N^2+2*N+10
N = 10 T(N) = 130
N = 100 T(N) = 10210
N = 1000 T(N) = 1002010
通过对N取值分析,对结果影响最大的一项是N^2
//请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
int count = 0;
for (int i = 0; i < N; ++i)
{
for (int j = 0; j < N; ++j)
{
++count;
}
}
}
for (int k = 0; k < 2 * N; ++k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
实际中,我们计算时间复杂度时,计算的也不是程序精确的次数,精确次数计算起来还是很麻烦的,计算出精确次数意义也不大,因为我们计算时间复杂度只是想比较算法程序的增长量级,也就是当N不断变大时T(N)的差别,所以我们只要计算程序能代表增长量级的大概执行次数,复杂度的表示通常使用大O的渐进表示法。
3.1 大O的渐进表示法
大O符号:是用于描述函数渐进行为的数学符号
推导大O阶规则
1. 时间复杂度函数式T(N)中,只保留最高阶项,去掉那些低阶项,因为当N不断变大时,低阶项对结果的影响越来越小。
2.如果最高阶项存在且不是1,则去除这个项目的常数系数,因为当N不断变大时,这个系数对结果影响越来越小,当N无穷大时,就可以忽略不计了。
3. T(N)中如果没有N相关的项目,只有常数项,用常数1取代所有加法常数。
通过以上方法可以得到Func1的时间复杂度为:O(N^2).
3.2 时间复杂度计算示例
3.2.1 示例1
总结:
//计算Func3的时间复杂度?
void Func2(int N)
{
int count = 0;
for (int k = 0; k < 2 * N; ++k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d", count);
}
FUNC2执行的基本操作次数:
T(N) = 2N+10
根据推导规则第3条得出
Func2的时间复杂度为:O(N)
3.2.2 示例2
void Func2(int N)
{
int count = 0;
for (int k = 0; k < 2 * N; ++k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d", count);
}
Func4执行的基本操作次数:
T(N) = 100
根据推导1得出
FUNC2的时间复杂度为:0(1)
通过上面我们会发现,有些算法时间复杂度存在最好和最坏的情况。
最坏情况: 任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数。
最好情况:任意输入规模的最小运行次数(下界)。
大O的渐进 表示法在实际中一般情况关注的是算法的上界,也就是最坏的情况。
3.2.3 示例5
//计算BubbleSort的时间复杂度
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; i++)
{
if (a[i - 1] > a[i])
{
Swap(&a[i - 1], &a[i]);
exchange = 1;
}
}
if (exchange == 0}
break;
}
BubbleSort执行的基本操作次数:
1.若数组有序,则:
T(N) = N
2. 若数组有序且为降序,则:
T(N) = N*(N+1)/2
3. 若要查找的字符在字符串中间位置,则:
T(N ) = N^2
因此:最差情况为O(N^2)
3.2.6 示例6
void Func5(int n)
{
int cut = 1;
while (cut < n)
{
cut* = 2;
}
}
当n = 2时,执行次数为1
当n =4时,执行次数为2
当n =16时,执行次数为4
执行次数为x时,则2^x = n
因此执行次数:x = log n
因此:func5的时间复杂度取最差情况:O(log2n)
当n接近无穷大时,底数的大小对结果影响不大,可以忽略,表示log n
3.2.7 示例7
//计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
if (0 == N)
{
return 1;
}
return Fac(N - 1) * N;
}
调用一次Fac函数的时间复杂度为O(1),而在Fac函数中,存在n次递归调用Fac函数
因此:
阶乘递归的时间复杂度为O(N)