时间复杂度和空间复杂度(详解)(1/2)

各位客官好,这里是我说风俗,大家点点赞,收收藏,各位的支持是我持续更新的动力【》-《】


1.  时间复杂度

2.  空间复杂度


1. 时间复杂度

定义:在计算机科学中,算法的时间复杂度是一个函数式T(N),它定量描述了该算法的运行时间。

时间复杂度是衡量程序的时间和效率,那为什么不去计算程序的运行时间呢?

1.  因为程序运行时间和编译环境和运行机器的配置都有关系,比如一个算法程序,用一个老编译器进行编译和新编译器编译,在同一个机器上,运行时间不足。

2.  同一个算法程序,低配和高配机器,运行时间不同。

3.  并且时间只能运行后测试,不能写之前通过理论计算评估。 

那么算法时间复杂度函数式T(N)到底是什么呢?这个T(N)函数式计算了程序的运行次数。假设每句指令执行的时间基本一样(实际中有微乎其微的差别),那么执行次数和运行时间比就是正相关,这样也脱离了具体的编译环境。执行次数就可以代表时间效率的优劣。比如解决一个问题的算法a程序T(N)=N,算法b程序T(N)=N^2,那么a的算法一定大于b。

Func1执行的基本操作次数:

T(N) = N^2+2*N+10

N = 10  T(N) = 130

N = 100  T(N) = 10210

N = 1000  T(N) = 1002010

通过对N取值分析,对结果影响最大的一项是N^2

//请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{

	int count = 0;
	for (int i = 0; i < N; ++i)
	{
		for (int j = 0; j < N; ++j)
		{
			++count;
		}

	}
}
    for (int k = 0; k < 2 * N; ++k)
   {
		++count;
    }
	int M = 10;
	while (M--)
	{
		++count;
	}

实际中,我们计算时间复杂度时,计算的也不是程序精确的次数,精确次数计算起来还是很麻烦的,计算出精确次数意义也不大,因为我们计算时间复杂度只是想比较算法程序的增长量级,也就是当N不断变大时T(N)的差别,所以我们只要计算程序能代表增长量级的大概执行次数,复杂度的表示通常使用大O的渐进表示法。


3.1  大O的渐进表示法

大O符号:是用于描述函数渐进行为的数学符号

推导大O阶规则

1.  时间复杂度函数式T(N)中,只保留最高阶项,去掉那些低阶项,因为当N不断变大时,低阶项对结果的影响越来越小。

2.如果最高阶项存在且不是1,则去除这个项目的常数系数,因为当N不断变大时,这个系数对结果影响越来越小,当N无穷大时,就可以忽略不计了。

3.  T(N)中如果没有N相关的项目,只有常数项,用常数1取代所有加法常数。

通过以上方法可以得到Func1的时间复杂度为:O(N^2).


3.2 时间复杂度计算示例 

3.2.1 示例1

总结:

//计算Func3的时间复杂度?
void Func2(int N)
{
	int count = 0;
	for (int k = 0; k < 2 * N; ++k) 
	{
		++count;

	}
	int M = 10;
	while (M--)
	{
		++count;
	}
	printf("%d", count);
}

FUNC2执行的基本操作次数: 

T(N) = 2N+10

根据推导规则第3条得出

Func2的时间复杂度为:O(N)

3.2.2  示例2

void Func2(int N)
{
	int count = 0;
	for (int k = 0; k < 2 * N; ++k)
	{
		++count;

	}
	int M = 10;
	while (M--)
	{
		++count;
	}
	printf("%d", count);
}

Func4执行的基本操作次数: 

T(N) = 100

根据推导1得出

FUNC2的时间复杂度为:0(1)

通过上面我们会发现,有些算法时间复杂度存在最好和最坏的情况。

最坏情况:  任意输入规模的最大运行次数(上界)

平均情况:任意输入规模的期望运行次数。

最好情况:任意输入规模的最小运行次数(下界)。

大O的渐进 表示法在实际中一般情况关注的是算法的上界,也就是最坏的情况。

3.2.3  示例5

//计算BubbleSort的时间复杂度
void BubbleSort(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; i++)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}
		if (exchange == 0}
	          break;
}

 BubbleSort执行的基本操作次数:

1.若数组有序,则:

T(N) = N

2. 若数组有序且为降序,则:

T(N) = N*(N+1)/2

3. 若要查找的字符在字符串中间位置,则:

T(N ) = N^2

因此:最差情况为O(N^2)

3.2.6 示例6

void Func5(int n)
{
	int cut = 1;
	while (cut < n)
	{
		cut* = 2;
	}
}

 当n = 2时,执行次数为1

当n =4时,执行次数为2
当n =16时,执行次数为4

执行次数为x时,则2^x = n

因此执行次数:x = log n

因此:func5的时间复杂度取最差情况:O(log2n)

当n接近无穷大时,底数的大小对结果影响不大,可以忽略,表示log n

   3.2.7  示例7

//计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
	if (0 == N)
	{
		return 1;
	}
	return Fac(N - 1) * N;
}

调用一次Fac函数的时间复杂度为O(1),而在Fac函数中,存在n次递归调用Fac函数

因此:

阶乘递归的时间复杂度为O(N) 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值