【KMP算法详解——适合初学KMP算法的朋友】

相信很多人(包括自己)初识KMP算法的时候始终是丈二和尚摸不着头脑,要么完全不知所云,要么看不懂书上的解释,要么自己觉得好像心里了解KMP算法的意思,却说不出个究竟,所谓知其然不知其所以然是也。
     经过七八个小时地仔细研究,终于感觉自己能说出其所以然了,又觉得数据结构书上写得过于简洁,不易于初学者接受,于是决定把自己的理解拿出来与大家分享,希望能抛砖引玉,这便是Bill写这篇文章想要得到的最好结果了
-----------------------------------谨以此文,献给刚接触KMP算法的朋友,定有不足之处,望大家指正----------------------------------------
 
 
 
【KMP算法简介】
 
         KMP算法是一种改进后的字符串匹配算法,由D.E.Knuth与V.R.Pratt和J.H.Morris同时发现,因此人们称它为克努特——莫里斯——普拉特操作(简称KMP算法)。通过一个辅助函数实现跳过扫描不必要的目标串字符,以达到优化效果。
 
 
 
【传统字符串匹配算法的缺憾】
 
         Bill认为,对于一种优化的算法,既要知道优化的细节,也更应该了解它的前身(至于KMP是否基于传统算法,我不清楚,这里只作语境上的前身),了解是什么原因导致了人们要去优化它,因此加入了这一段:
请看以下传统字符串匹配的代码:
C++ code

 
void NativeStrMatching( ElemType Target[], ElemType Pattern[] )            
{            
        register int TarLen = 0;        // Length of Target            
        register int PatLen = 0;        // Length of Pattern            
         
        // Compute the length of Pattern            
        while( '\0' != Pattern[PatLen] )            
                PatLen++;            
         
        while( '\0' != Target[TarLen] )            
        {            
                int TmpTarLen = TarLen;            
                for(int i=0; i<PatLen; i++)            
                {            
                        if( Target[TmpTarLen++] != Pattern[i] )            
                                break;            
                        if( i == PatLen-1 )            
                                cout<<"Native String Matching,pattern occurs with shift "<<TarLen<<endl;            
                }            
                TarLen++;            
        }            
}    

 
【代码思想】
     传统匹配思想是,从目标串Target的第一个字符开始扫描,逐一与模式串的对应字符进行匹配,若该组字符匹配,则检测下一组字符,如遇失配,则退回到Target的第二个字符,重复上述步骤,直到整个Pattern在Target中找到匹配,或者已经扫描完整个目标串也没能够完成匹配为止。
     这样的算法理解起来很简单,实现起来也容易,但是其中包含了过多不必要的操作,也就是在目标串中,有些字符是可以直接跳过,不必检测的。
不妨假设我们的目标串
Target =  "a b c d e a b c d e a b c d f"
需要匹配的模式串
Pattern = "c d f";
那么当匹配到如下情况时
 
       

 
 
 
由于 'e' != 'f' ,因此失配,那么下次匹配起始位置就是目标串的'd'字符
     

 
 
 
 
 
我们发现这里照样失配,直到运行到下述情况
 

 
 
 
 
 
 
也就是说,中间的四个字符 d e a b 完全没有必要检测,直接跳转到下一个'c'开始的地方进行检测  
    
     由此可见传统算法虽然简单易行,但其中包含了过多的不必要操作,并不能很好地达到实际工作中需要的效率,因此个人认为此方法适合为初识字符串匹配做一个铺垫作用,有抛砖引玉之意。
     说其抛砖引玉并不为过,对KMP算法的理解便可以基于传统模式串匹配算法进行思考。
 
 
 
【KMP算法的引入】
 
     既然知道了传统算法的不足之处,就要对症下药,优化这个冗余的检测算法。
     KMP算法就能很好地解决这个冗余问题。
     其主要思想为:
          在失配后,并不简单地从目标串下一个字符开始新一轮的检测,而是依据在检测之前得到的有用信息(稍后详述),直接跳过不必要的检测,从而达到一个较高的检测效率。
     如我们的
 
 
        当第一次失配后,并不从红色标记字符'd'开始检测,而是通过一些有用信息,直接跳过后几个肯定不可能匹配的冗余字符,而直接让模式串Pattern从目标串的红色标记字符'c'开始新一轮的检测,从而达到了减少循环次数的效果
 
 
 
【KMP算法思想详述与实现】
 
        前面提到,KMP算法通过一个“有用信息”可以知道目标串中下一个字符是否有必要被检测,这个“有用信息”就是用所谓的“前缀函数(一般数据结构书中的next函数)”来存储的。
        这个函数能够反映出现失配情况时,系统应该跳过多少无用字符(也即模式串应该向右滑动多长距离)而进行下一次检测,在上例中,这个距离为4.
        总的来讲,KMP算法有2个难点:
              一是这个前缀函数的求法。
              二是在得到前缀函数之后,怎么运用这个函数所反映的有效信息避免不必要的检测。
下面分为两个板块分别详述:
 
 
【前缀函数的引入及实现】
 
【前缀函数的引入】
        对于前缀函数,先要理解前缀是什么:
        简单地说,如字符串A = "abcde"        B = "ab"
        那么就称字符串B为A的前缀,记为B ⊏ A(注意那不是"包含于",Bill把它读作B前缀于A),说句题外话——"⊏"这个符号很形象嘛,封了口的这面相当于头,在头前面的就是前缀了。
        同理可知 C = "e","de" 等都是 A 的后缀,以为C ⊐ A(Bill把它读作C后缀于A)
      
理解了什么是前、后缀,就来看看什么是前缀函数:
        在这里不打算引用过多的理论来说明,直接引入实例会比较容易理解,看如下示例:
 
      (下述字符若带下标,则对应于图中画圈字符)
      这里模式串 P = “ababaca”,在匹配了 q=5 个字符后失配,因此,下一步就是要考虑将P向右移多少位进行新的一轮匹配检测。传统模式中,直接将P右移1位,也就是将P的首字符'a'去和目标串的'b'字符进行检测,这明显是多余的。通过我们肉眼的观察,可以很简单的知道应该将模式串P右移到下图'a3'处再开始新一轮的检测,直接跳过肯定不匹配的字符'b',那么我们“肉眼”观察的这一结果怎么把它用语言表示出来呢?
 

     我们的观察过程是这样的:
          P的前缀"ab"中'a' != 'b',又因该前缀已经匹配了T中对应的"ab",因此,该前缀的字符'a1'肯定不会和T中对应的字串"ab"中的'b'匹配,也就是将P向右滑动一个位移是无意义的。
          接下来考察P的前缀"aba",发现该前缀自身的前缀'a1'与自身后缀'a2'相等,"a1 b a2" 已经匹配了T中的"a b a3",因此有 'a2' == 'a3', 故得到 'a1' == 'a3'......
          利用此思想,可推知在已经匹配 q=5 个字符的情况下,将P向右移 当且仅当 2个位移时,才能满足既没有冗余(如把'a'去和'b'比较),又不会丢失(如把'a1' 直接与 'a4' 开始比较,则丢失了与'a3'的比较)。
          而前缀函数就是这样一种函数,它决定了q与位移的一一对应关系,通过它就可以间接地求得位移s。
   
     通过对各种模式串进行上述分析(大家可以自己多写几个模式串出来自己分析理解),发现给定一个匹配字符数 q ,则唯一对应一个有效位移,如上述q=5,则对应位移为2.
     这就形成了一一对应关系,而这种唯一的关系就是由前缀函数决定的。
     这到底是怎样的一种关系呢?
     通过对诸多模式串实例的研究,我们会找到一个规律(规律的证明及引理详见《算法导论(第二版)》)。
     上例中,P 已经匹配的字符串为"ababa",那么这个字符串中,满足既是自身真后缀(即不等于自身的后缀),又是自身最长前缀的字符串为"aba",我们设这个特殊字串的长度为L,显然,L = 3. 故我们要求的 s = q - L = 5 - 3 = 2 ,满足前述分析。
   
     根据这个规律,即可得到我们要求的有效位移s,等于已经匹配的字符数 q 减去长度 L。
     即 s = q - L
     因为这个长度 L 与 q 一一对应,决定于q,因此用一函数来表达这一关系非常恰当,这就是所谓的前缀函数了。
     因为已经分析得到该关系为一一对应关系,因此用数组来表示该函数是比较恰当的,以数组的下标表示已经匹配的字符数 q,以下标对应的数据存储 L。
 
【前缀函数的实现】
   
下面就来分析怎么用代码来表达这种关系。
这里采用《算法导论(第二版)》中的思想求解。
不妨以 PrefixFunc[] 表示这个前缀函数,那么我们将得到以下求前缀函数的函数:
由于 0 个匹配字符数在计算中没有意义,因此PrefixFunc下标从1开始,也就是从已经有一个字符(即首字符)匹配的情况开始
C++ code
 
// Compute Prefix function            
void CptPfFunc( ElemType Pattern[], int PrefixFunc[] )                
{      
        register int iLen = 0;    // Length of Pattern[]            
        while( '\0' != Pattern[iLen] )            
                iLen++;            
                    
        int LOLP = 0;     // Lenth of longest prefix            
        PrefixFunc[1] = 0;            
         
        for( int NOCM=2; NOCM<iLen+1; NOCM++ )     // NOCM represent the number of characters matched            
        {            
                while( LOLP>0 && (Pattern[LOLP] != Pattern[NOCM-1]) )            
                        LOLP = PrefixFunc[LOLP];            
                if( Pattern[LOLP] == Pattern[NOCM-1] )            
                        LOLP++;            
                PrefixFunc[NOCM] = LOLP;            
        }            
}            
    

 

    
 对此函数的详解,不妨以一实例带入(建议大家自己手算一下,算完应该就有感觉了),易于理解:
                            
 不妨设模式串Pattern = "a  b  c  c  a  b  c  c  a  b  c  a"
      Pattern 数组编号: 0  1  2  3  4  5  6  7  8  9 10 11
NOCM 表示 已经匹配的字符数
LOLP 表示 既是自身真后缀又是自身最长前缀的字符串长度
以下是计算流程:
PrefixFunc[1] = 0; //只匹配一个字符就失配时,显然该值为零
LOLP = 0;   NOCM = 2;   LOLP = 0;    PrefixFunc[2] = 0;
LOLP = 0;   NOCM = 3;   LOLP = 0;    PrefixFunc[3] = 0;
LOLP = 0;   NOCM = 4;   LOLP = 0;    PrefixFunc[4] = 0;
LOLP = 0;   NOCM = 5;   LOLP = 1;    PrefixFunc[5] = 1;
LOLP = 1;   NOCM = 6;   LOLP = 2;    PrefixFunc[6] = 2;
LOLP = 2;   NOCM = 7;   LOLP = 3;    PrefixFunc[7] = 3;
LOLP = 3;   NOCM = 8;   LOLP = 4;    PrefixFunc[8] = 4;
LOLP = 4;   NOCM = 9;   LOLP = 5;    PrefixFunc[9] = 5;
LOLP = 5;   NOCM = 10; LOLP = 6;    PrefixFunc[10] = 6;
LOLP = 6;   NOCM = 11; LOLP = 7;    PrefixFunc[11] = 7;
LOLP = 7;   NOCM = 12;

---------此时满足条件while( LOLP>0 && (Pattern[LOLP] != Pattern[NOCM-1]) )-------------

while语句中的执行
{
           LOLP = 7;   NOCM = 12;  LOLP = PrefixFunc[7] = 3;
           LOLP = 3;   NOCM = 12;  LOLP = PrefixFunc[3] = 0;
}

LOLP = 0;   NOCM = 12; LOLP = 1;    PrefixFunc[12] = 1;
最后我们的前缀函数 PrefixFunc[] = { 0,0,0,0,1,2,3,4,5,6,7,1 }
其间最精妙的要属失配时的操作
while( LOLP>0 && (Pattern[LOLP] != Pattern[NOCM-1]) )
              LOLP = PrefixFunc[LOLP];
其中 LOLP = PrefixFunc[LOLP];  递归调用PrefixFunc函数,直到整个P字串都再无最长前缀或者找到一个之前的满足条件的最长前缀。
 
 
 
 
  【应用前缀函数优化传统匹配算法——KMP算法实现】

由以上分析,不难推导KMP算法的实现
C++ code
void KMPstrMatching( ElemType Target[], ElemType Pattern[] )            
{            
        int PrefixFunc[MAX_SIZE];            
        register int TarLen = 0;            
        register int PatLen = 0;            
         
        // Compute the length of array Target and Pattern            
        while( '\0' != Target[TarLen] )            
                TarLen++;            
         
        while( '\0' != Pattern[PatLen] )            
                PatLen++;            
                    
        // Compute the prefix function of Pattern            
        CptPfFunc( Pattern, PrefixFunc );            
         
        int NOCM = 0;     // Number of characters matched            
         
        for( int i=0; i<TarLen; i++ )            
        {            
                while( NOCM>0 && Pattern[NOCM] != Target[i] )            
                        NOCM = PrefixFunc[NOCM];            
                if( Pattern[NOCM] == Target[i] )            
                        NOCM++;            
                if( NOCM == PatLen )            
                {            
                        cout<<"KMP String Matching,pattern occurs with shift "<<i - PatLen + 1<<endl;            
                        NOCM = PrefixFunc[NOCM];            
                }            
        }            
}        
 
/*
** 由于时间关系,没能将上述KMP算法的实现细节一一讲清,以后有时间补上
*/
【参考文献】
《Introduction to Algorithms》Second Edition
 
by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford .
刚开始的时候直接看该算法不是很明白,这篇文章写的不错,以飨读者。。。

如果你能够看到这里的话,说明你真是认真研究kmp算法啦,如果还是比较难以理解前缀函数的构造的话,相信下面的内容正式你所需要的
这就是matrix67这位大牛的文章,讲解的十分透彻!!!!!

    我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法。KMP算法是拿来处理字符串匹配的。换句话说,给你两个字符串,你需要回答,B串是否是A串的子串(A串是否包含B串)。比如,字符串A="I'm matrix67",字符串B="matrix",我们就说B是A的子串。你可以委婉地问你的MM:“假如你要向你喜欢的人表白的话,我的名字是你的告白语中的子串吗?”
    解决这类问题,通常我们的方法是枚举从A串的什么位置起开始与B匹配,然后验证是否匹配。假如A串长度为n,B串长度为m,那么这种方法的复杂度是O (mn)的。虽然很多时候复杂度达不到mn(验证时只看头一两个字母就发现不匹配了),但我们有许多“最坏情况”,比如,A= "aaaaaaaaaaaaaaaaaaaaaaaaaab",B="aaaaaaaab"。我们将介绍的是一种最坏情况下O(n)的算法(这里假设 m<=n),即传说中的KMP算法。
    之所以叫做KMP,是因为这个算法是由Knuth、Morris、Pratt三个提出来的,取了这三个人的名字的头一个字母。这时,或许你突然明白了AVL 树为什么叫AVL,或者Bellman-Ford为什么中间是一杠不是一个点。有时一个东西有七八个人研究过,那怎么命名呢?通常这个东西干脆就不用人名字命名了,免得发生争议,比如“3x+1问题”。扯远了。
    个人认为KMP是最没有必要讲的东西,因为这个东西网上能找到很多资料。但网上的讲法基本上都涉及到“移动(shift)”、“Next函数”等概念,这非常容易产生误解(至少一年半前我看这些资料学习KMP时就没搞清楚)。在这里,我换一种方法来解释KMP算法。

    假如,A="abababaababacb",B="ababacb",我们来看看KMP是怎么工作的。我们用两个指针i和j分别表示,A[i-j+ 1..i]与B[1..j]完全相等。也就是说,i是不断增加的,随着i的增加j相应地变化,且j满足以A[i]结尾的长度为j的字符串正好匹配B串的前 j个字符(j当然越大越好),现在需要检验A[i+1]和B[j+1]的关系。当A[i+1]=B[j+1]时,i和j各加一;什么时候j=m了,我们就说B是A的子串(B串已经整完了),并且可以根据这时的i值算出匹配的位置。当A[i+1]<>B[j+1],KMP的策略是调整j的位置(减小j值)使得A[i-j+1..i]与B[1..j]保持匹配且新的B[j+1]恰好与A[i+1]匹配(从而使得i和j能继续增加)。我们看一看当 i=j=5时的情况。

    i = 1 2 3 4 5 6 7 8 9 ……
    A = a b a b a b a a b a b …
    B = a b a b a c b
    j = 1 2 3 4 5 6 7


    此时,A[6]<>B[6]。这表明,此时j不能等于5了,我们要把j改成比它小的值j'。j'可能是多少呢?仔细想一下,我们发现,j'必须要使得B[1..j]中的头j'个字母和末j'个字母完全相等(这样j变成了j'后才能继续保持i和j的性质)。这个j'当然要越大越好。在这里,B [1..5]="ababa",头3个字母和末3个字母都是"aba"。而当新的j为3时,A[6]恰好和B[4]相等。于是,i变成了6,而j则变成了 4:

    i = 1 2 3 4 5 6 7 8 9 ……
    A = a b a b a b a a b a b …
    B =     a b a b a c b
    j =     1 2 3 4 5 6 7


    从上面的这个例子,我们可以看到,新的j可以取多少与i无关,只与B串有关。我们完全可以预处理出这样一个数组P[j],表示当匹配到B数组的第j个字母而第j+1个字母不能匹配了时,新的j最大是多少。P[j]应该是所有满足B[1..P[j]]=B[j-P[j]+1..j]的最大值。
    再后来,A[7]=B[5],i和j又各增加1。这时,又出现了A[i+1]<>B[j+1]的情况:

    i = 1 2 3 4 5 6 7 8 9 ……
    A = a b a b a b a a b a b …
    B =     a b a b a c b
    j =     1 2 3 4 5 6 7


    由于P[5]=3,因此新的j=3:

    i = 1 2 3 4 5 6 7 8 9 ……
    A = a b a b a b a a b a b …
    B =         a b a b a c b
    j =         1 2 3 4 5 6 7


    这时,新的j=3仍然不能满足A[i+1]=B[j+1],此时我们再次减小j值,将j再次更新为P[3]:

    i = 1 2 3 4 5 6 7 8 9 ……
    A = a b a b a b a a b a b …
    B =             a b a b a c b
    j =             1 2 3 4 5 6 7


    现在,i还是7,j已经变成1了。而此时A[8]居然仍然不等于B[j+1]。这样,j必须减小到P[1],即0:

    i = 1 2 3 4 5 6 7 8 9 ……
    A = a b a b a b a a b a b …
    B =               a b a b a c b
    j =             0 1 2 3 4 5 6 7


    终于,A[8]=B[1],i变为8,j为1。事实上,有可能j到了0仍然不能满足A[i+1]=B[j+1](比如A[8]="d"时)。因此,准确的说法是,当j=0了时,我们增加i值但忽略j直到出现A[i]=B[1]为止。
    这个过程的代码很短(真的很短),我们在这里给出:

j:=0;
for i:=1 to n do
begin
   while (j>0) and (B[j+1]<>A[i]) do j:=P[j];
   if B[j+1]=A[i] then j:=j+1;
   if j=m then
   begin
      writeln('Pattern occurs with shift ',i-m);
      j:=P[j];
   end;
end;


    最后的j:=P[j]是为了让程序继续做下去,因为我们有可能找到多处匹配。
    这个程序或许比想像中的要简单,因为对于i值的不断增加,代码用的是for循环。因此,这个代码可以这样形象地理解:扫描字符串A,并更新可以匹配到B的什么位置。

    现在,我们还遗留了两个重要的问题:一,为什么这个程序是线性的;二,如何快速预处理P数组。
    为什么这个程序是O(n)的?其实,主要的争议在于,while循环使得执行次数出现了不确定因素。我们将用到时间复杂度的摊还分析中的主要策略,简单地说就是通过观察某一个变量或函数值的变化来对零散的、杂乱的、不规则的执行次数进行累计。KMP的时间复杂度分析可谓摊还分析的典型。我们从上述程序的j 值入手。每一次执行while循环都会使j减小(但不能减成负的),而另外的改变j值的地方只有第五行。每次执行了这一行,j都只能加1;因此,整个过程中j最多加了n个1。于是,j最多只有n次减小的机会(j值减小的次数当然不能超过n,因为j永远是非负整数)。这告诉我们,while循环总共最多执行了n次。按照摊还分析的说法,平摊到每次for循环中后,一次for循环的复杂度为O(1)。整个过程显然是O(n)的。这样的分析对于后面P数组预处理的过程同样有效,同样可以得到预处理过程的复杂度为O(m)。
    预处理不需要按照P的定义写成O(m^2)甚至O(m^3)的。我们可以通过P[1],P[2],...,P[j-1]的值来获得P[j]的值。对于刚才的B="ababacb",假如我们已经求出了P[1],P[2],P[3]和P[4],看看我们应该怎么求出P[5]和P[6]。P[4]=2,那么P [5]显然等于P[4]+1,因为由P[4]可以知道,B[1,2]已经和B[3,4]相等了,现在又有B[3]=B[5],所以P[5]可以由P[4] 后面加一个字符得到。P[6]也等于P[5]+1吗?显然不是,因为B[ P[5]+1 ]<>B[6]。那么,我们要考虑“退一步”了。我们考虑P[6]是否有可能由P[5]的情况所包含的子串得到,即是否P[6]=P[ P[5] ]+1。这里想不通的话可以仔细看一下:

        1 2 3 4 5 6 7
    B = a b a b a c b
    P = 0 0 1 2 3 ?


    P[5]=3是因为B[1..3]和B[3..5]都是"aba";而P[3]=1则告诉我们,B[1]、B[3]和B[5]都是"a"。既然P[6]不能由P[5]得到,或许可以由P[3]得到(如果B[2]恰好和B[6]相等的话,P[6]就等于P[3]+1了)。显然,P[6]也不能通过P[3]得到,因为B[2]<>B[6]。事实上,这样一直推到P[1]也不行,最后,我们得到,P[6]=0。
    怎么这个预处理过程跟前面的KMP主程序这么像呢?其实,KMP的预处理本身就是一个B串“自我匹配”的过程。它的代码和上面的代码神似:

P[1]:=0;
j:=0;
for i:=2 to m do
begin
   while (j>0) and (B[j+1]<>B[i]) do j:=P[j];
   if B[j+1]=B[i] then j:=j+1;
   P[i]:=j;
end;
//值得注意的是这里martix67在数组B[]A[],都没有用A[0]B[0],有时候数组的第0号元素,引起程序Bug!!!!

    最后补充一点:由于KMP算法只预处理B串,因此这种算法很适合这样的问题:给定一个B串和一群不同的A串,问B是哪些A串的子串。

    串匹配是一个很有研究价值的问题。事实上,我们还有后缀树,自动机等很多方法,这些算法都巧妙地运用了预处理,从而可以在线性的时间里解决字符串的匹配。我们以后来说。


    

Matrix67原创





另外这个链接上面也有好多东西呢
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值