月白风清江有声
码龄1年
关注
提问 私信
  • 博客:16,356
    16,356
    总访问量
  • 26
    原创
  • 44,921
    排名
  • 223
    粉丝
  • 0
    铁粉

个人简介:好好学习,天天向上。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:陕西省
  • 加入CSDN时间: 2023-11-07
博客简介:

大师的学徒的博客

查看详细资料
  • 原力等级
    当前等级
    3
    当前总分
    202
    当月
    0
个人成就
  • 获得348次点赞
  • 内容获得1次评论
  • 获得197次收藏
创作历程
  • 26篇
    2024年
成就勋章
TA的专栏
  • 深度学习
    1篇
  • 最优化方法
    7篇
  • 数值计算方法与算法
    13篇
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

基于基础薄弱的备考六级指南

冲刺的时候,每天一套卷子,大概是下午起床听听力并且做一个短篇阅读,下午吃完饭做一个长篇和另一个短篇,晚自习写个作文和翻译,15选10随缘,晚上睡前简单对个答案,第二天早上总结一下,就这样循环往复,雷打不动。单词:六级一共5k5词,每天背点,从一天30词逐渐加量,最后阶段一天甚至可以花一小时背500词(也不知道背了个啥,大概率没用),单词书和扇贝单词结合,也可以听单词视频,我没试过不过多种感官调用最好。作文模板范文串讲,翻译常用词和高频词,最终预测,其实报网课都会发讲义,网上课程也都可以搜的到,背就完事了。
原创
发布博客 2024.12.15 ·
376 阅读 ·
6 点赞 ·
0 评论 ·
3 收藏

《把时间当作朋友(第3版)》 1—3章

当你把时间花在一个人身上的时候,相当于在他的身上倾注了你生命的一段,不管最终结果如何,反正,那个人、那件事都成了你生命的一部分——不管最后你是喜欢还是不喜欢。
原创
发布博客 2024.12.08 ·
1021 阅读 ·
14 点赞 ·
0 评论 ·
20 收藏

《卡拉马佐夫兄弟(套装上下册)(陀思妥耶夫斯基文集2015)》 陀思妥耶夫斯基

这段中提到“舍身也许是所有的牺牲中最轻而易举的”,但许多人却难以放下自己的短期利益、欲望和安逸生活,去追求长远的目标或更高的真理。:在多篇中,命运、选择、爱与责任交织,尤其是在对伊万的描写中提到“如果在这样关键的时刻一个年轻人心中没有迸发出爱的火花,那要到什么时候才迸发?”这一思考,也许在提醒读者,面对命运的抉择,我们是否敢于勇敢地去拥抱内心的真正欲望与爱,而非仅仅遵循外界的标准与期待。:许多段落讨论了社会的层级和人性中的丑陋,尤其是如何评判“好与坏”,如何看待一个人的社会地位、行为和道德。
原创
发布博客 2024.12.08 ·
206 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

基于神经网络的弹弹堂类游戏弹道快速预测

在机器学习中,神经网络是解决回归和分类问题的强大工具。本文通过对比全连接神经网络(SimpleNN)在不同激活函数下的表现,探索不同激活函数对模型训练过程和最终性能的影响。本实验通过使用PyTorch框架,首先使用ReLU激活函数,之后将激活函数切换为tanh,分析这两种激活函数在回归问题中的差异。———————————————— 版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
原创
发布博客 2024.12.02 ·
1114 阅读 ·
41 点赞 ·
0 评论 ·
29 收藏

全链接神经网络拟合函数

在拟合正弦函数的任务中,增加偏置项使得网络能够更有效地模拟正弦波的起伏,改善了拟合的效果,减少了偏差,提升了模型的预测精度。通过对比模型的预测值与原始数据,可以看出,预测值与实际正弦函数的值非常接近,表明模型已成功模拟了正弦函数的行为。(双曲正切函数),该函数的输出范围为 [-1, 1],更符合正弦波的输出特性,相较于 Sigmoid 函数,Tanh 能更有效地模拟正弦波的起伏。函数的输出范围是 (0, 1),无法有效表示正弦函数的负值部分,而正弦函数的输出范围是 [-1, 1],且具有周期性的波动。
原创
发布博客 2024.11.29 ·
710 阅读 ·
24 点赞 ·
0 评论 ·
16 收藏

手写体数字分类模型

为了加速训练,我们将学习率设置为0.05,并使用动量(momentum)来防止梯度更新的震荡,经过若干隐藏层的处理后,输出10个神经元的向量,每个神经元表示一个数字类别的概率。FCNet由于缺乏图像的空间结构处理能力,导致其在分类任务中的表现较弱,训练过程中,FCNet的准确率较慢提升,最终准确率约为92%,而LeNet的准确率提升较快,训练结束时准确率约为98%。如图 2所示,尽管LeNet在计算复杂度上相对较高,因为卷积层和池化层会增加计算量,但相对于其在准确率上的提升,计算的代价是值得的。
原创
发布博客 2024.11.27 ·
1091 阅读 ·
40 点赞 ·
0 评论 ·
28 收藏

数值计算器fminunc处理约束问题的惩罚/障碍函数法

数值求解器迭代次数不够往往求得的解不是实际的解,慎用。
原创
发布博客 2024.10.11 ·
314 阅读 ·
7 点赞 ·
0 评论 ·
0 收藏

关于KKT条件的线性约束下非线性问题-MATLAB

KKT条件得名于三位数学家:Karush(1939)、Kuhn(1951)和Tucker(1952),他们分别提出了类似的优化条件,并在后续研究中被统一和扩展。KKT条件是一种用于判断约束优化问题全局最优解的必要条件(在某些情况下也是充分条件),它通过引入拉格朗日乘子法和对偶性,将原问题转化为更易求解的形式。
原创
发布博客 2024.09.28 ·
1013 阅读 ·
28 点赞 ·
0 评论 ·
3 收藏

KKT实际运用 -MATLAB

【代码】KKT实际运用 -MATLAB。
原创
发布博客 2024.09.25 ·
617 阅读 ·
13 点赞 ·
0 评论 ·
0 收藏

DFP算法-MATLAB

DFP算法是在20世纪60年代初期由Davidon、Fletcher和Powell共同开发的,是拟牛顿法(Quasi-Newton Methods)的一种重要实现。拟牛顿法的基本思想是利用目标函数在当前点附近的二次近似来构造搜索方向,并通过迭代更新这一近似来逼近真实的解。DFP算法通过不断更新Hessian矩阵的逆矩阵(或其近似)来实现这一目标,从而避免了直接计算Hessian矩阵及其逆矩阵的高昂代价。
原创
发布博客 2024.09.21 ·
797 阅读 ·
11 点赞 ·
0 评论 ·
8 收藏

Runge-Kutta法求二阶常微分方程-C++

二阶常微分方程是数学和物理学中常见的一类方程,形式通常为 y'' = f(x, y, y')。由于Runge-Kutta法是一种高效的数值积分方法,特别适用于求解一阶微分方程,因此当需要求解二阶微分方程时,通常需要先将其转换为一阶微分方程组。这可以通过引入一个新的变量(如 z = y')来实现,从而将原二阶方程转化为两个一阶方程:y' = z 和 z' = f(x, y, z)。在C++编程中,实现Runge-Kutta法求解二阶常微分方程涉及到编写相应的函数和循环结构,以及处理转换后的一阶微分方程组。
原创
发布博客 2024.09.19 ·
700 阅读 ·
10 点赞 ·
0 评论 ·
3 收藏

Runge-Kutta法(龙格-库塔法)求一阶常微分方程-C++

Runge-Kutta法是基于离散化的思想,将连续的时间区间分成若干个离散时间步长,然后在每个时间步长内,通过计算微分方程的导数来得到该时间步长内解的近似值。该方法通过多次迭代和插值来逼近真实解,具有较高的精度和较好的稳定性。在C++编程中,Runge-Kutta法可以通过编写相应的函数和循环结构来实现,从而求解各种类型的一阶常微分方程。
原创
发布博客 2024.09.19 ·
588 阅读 ·
4 点赞 ·
0 评论 ·
6 收藏

Gauss-Seidel迭代法-C++

背景Gauss-Seidel迭代法是基于Jacobi迭代法的改进,旨在通过利用已更新的近似解来加速迭代过程,从而更快地逼近线性方程组的解。该方法特别适用于求解对称正定矩阵或对角占优的线性方程组。
原创
发布博客 2024.09.19 ·
1055 阅读 ·
17 点赞 ·
0 评论 ·
6 收藏

Romberg求积算法-C++

Romberg求积算法是一种数值积分算法,它基于外推的思想,通过递归地划分积分区间并计算子区间积分来提高精度。这种算法结合了复化梯形公式和Richardson外推法,通过逐步构建更高阶的求积公式,并以较小的计算代价获得远高于原始公式的精确度。Romberg求积算法特别适用于求解定积分问题,尤其是当被积函数光滑且积分区间有限时,能够在保证精度的前提下有效减少计算量。
原创
发布博客 2024.09.15 ·
712 阅读 ·
10 点赞 ·
0 评论 ·
9 收藏

Jacobi迭代法-C++

Jacobi迭代法是一种用于求解线性方程组的数值迭代方法,特别适用于求解大型稀疏矩阵的方程组。它通过迭代的方式逐步逼近方程组的解,每次迭代都基于前一次迭代的结果进行更新。在C++中实现Jacobi迭代法,可以高效地处理这类问题,尤其是在需要并行计算或分布式处理的场景中。
原创
发布博客 2024.09.15 ·
525 阅读 ·
13 点赞 ·
0 评论 ·
1 收藏

Newton迭代法-C++【可直接复制粘贴/欢迎评论点赞】

Newton迭代法(又称为牛顿-拉夫逊方法)在C++中的实现涉及到了求解非线性方程或方程组根的一种数值方法。
原创
发布博客 2024.09.14 ·
506 阅读 ·
3 点赞 ·
0 评论 ·
10 收藏

弦截法-C++【可直接复制粘贴/欢迎评论点赞】

弦截法(也称为弦切法)在C++中实现时,是一种用于求解非线性方程根的迭代方法。
原创
发布博客 2024.09.14 ·
442 阅读 ·
10 点赞 ·
0 评论 ·
5 收藏

拉格朗日插值法-C++【可直接复制粘贴/欢迎评论点赞】

拉格朗日插值法是一种数学上用于通过已知数据点构造多项式的插值方法。在C++中实现拉格朗日插值法,既能够利用C++的强大计算能力,又能够体现出拉格朗日插值法的独特优势。
原创
发布博客 2024.09.13 ·
505 阅读 ·
3 点赞 ·
0 评论 ·
7 收藏

Cholesky分解法-C++【可直接复制粘贴/欢迎评论点赞】

优点高效性:Cholesky分解法特别适用于对称正定矩阵,其计算效率通常高于一般的矩阵分解方法,如LU分解。这对于处理大规模矩阵和计算资源有限的场景尤为重要。 数值稳定性:与某些其他分解方法相比,Cholesky分解法具有较好的数值稳定性,能够更准确地处理矩阵的分解和后续的计算。 易于实现:C++作为一种高效且灵活的编程语言,提供了丰富的数学库和数据结构支持,使得Cholesky分解法的实现变得相对简单。 广泛应用:Cholesky分解法在多个领域都有广泛的应用,包括数值计算、线性代数、优化问
原创
发布博客 2024.09.13 ·
323 阅读 ·
3 点赞 ·
0 评论 ·
10 收藏

复合Simpson求积算法-C++【可直接复制粘贴/欢迎评论点赞】

Simpson 1/3法则是一种数值积分方法,它通过将积分区间划分为多个小区间,并在每个小区间上采用一个二次多项式来逼近原函数,进而求得积分的近似值。复合Simpson求积算法则是将这种方法应用于整个积分区间,即将整个区间划分为多个小区间,并在每个小区间上分别应用Simpson 1/3法则进行积分计算,最后将各小区间的积分结果相加得到整个区间的积分近似值。在C++中实现复合Simpson求积算法时,通常需要定义函数来计算被积函数在特定点的值,并编写主函数来执行分区、计算各小区间的积分值以及累加求和等步骤。
原创
发布博客 2024.09.13 ·
505 阅读 ·
12 点赞 ·
0 评论 ·
11 收藏
加载更多