题目描述
还记得汉诺塔III吗?他的规则是这样的:不允许直接从最左(右)边移到最右(左)边(每次移动一定是移到中间杆或从中间移出),也不允许大盘放到小盘的上面。xhd在想如果我们允许最大的盘子放到最上面会怎么样呢?(只允许最大的放在最上面)当然最后需要的结果是盘子从小到大排在最右边。
输入
输入数据的第一行是一个数据T,表示有T组数据。
每组数据有一个正整数n(1 <= n <= 20),表示有n个盘子。
每组数据有一个正整数n(1 <= n <= 20),表示有n个盘子。
输出
对于每组输入数据,最少需要的摆放次数。
样例输入
2
1
10
样例输出
2 19684 先将上面n-1个移至相邻 将第n个盘子移至最后一个 再将n-1个移至相邻。#include <stdio.h> #define LL long long const int maxn = 25; LL ans[maxn], sum[maxn]; int main ( ) { ans[1] = sum[1] = 1; for ( int i = 2; i < maxn; i ++ ) { ans[i] = ans[i-1]*3; //保存移至相邻柱子的次数 sum[i] = sum[i-1]+ans[i]; //统计总次数 } int T, n; scanf ( "%d", &T ); while ( T -- ) { scanf ( "%d", &n ); printf ( "%lld\n", sum[n-1]*2+2 ); //将前n-1移至相邻柱子,将第n个移至最后一根需要2次,然后再移至相邻柱子 } return 0; }