图像超分辨率重建

一、前言

写这篇文章,主要看了NTIRE 图像复原(Image Restoration)。挑战赛上超分辨率赛道上一些优胜队伍的方法。在这里跟大家分享下,如有错误的地方,还请指正,学习为主。
主要有图像超分辨率(super-resolution)、图像去雾(dehazing)、光谱重建(spectral reconstruction)三个方向。

基于深度学习的超分辨率重建 :

  • 发展历程为:SRCNN[1]FSRCNN[2]ESPCN[3]VDSR[4]EDSR[5]SRGAN[6]

二、网络详解

2.1 FSRCNN

SRCNN[1]是最早用CNN来进行超分辨率重建的论文。FSRCNN[2] 是对SRCNN的改进,主要贡献在于直接原图像进行端对端的重建,在速度上也非常快:如下图
这里写图片描述

2.2 ESPCN

ESPCN [3] 主要提出了subpixel convolution的方法,这种方式在之后很多方法的上采样重建中都有被使用。
这里写图片描述

2.3 VDSR

VDSR [4]第一个将全局残差引入SR的方法,使得训练速度明显加快,在PSNR以及SSIM评价指标上有了很大的提升。VDSR之后大部分方法都采用了这种方式。当然还有很多很优秀的网络例如RED、DRRN、MemNet、LapSR这里不在过多介绍。
这里写图片描述

2.4 EDSR

EDSR[5]是首届NTIRE2017的超分辨率冠军,其主要使用了增强的ResNet,移除了batchnorm,使用了L1 loss训练
这里写图片描述

2.5 SR-GAN

SRGAN则是 将GAN引入SR重建的。此外SRGAN与其他上述方法,不同的是重建得到的图像虽然比上述方法都要清晰,但在PSNR和SSIM上都要比上述方法甚至是bicubic上采用得到都要低很多。主要原因SRGAN使用了style transfer里用到的感知损失(当然也用非GAN方法使用感知损失的,例如EnhanceNet[8]),而感知损失重建的图像在人类的认知视觉上更舒服,但细节恢复上确实会和原图相差很多。
这里写图片描述

超分辨率重建方向:

  • 第一个方向力求恢复出真实可靠的细节部分,应用场景例如医学影像上的超分辨率重建,低分辨率摄像头人脸或者外形的恢复等对细节要求苛刻的场景。
  • 另一个则追求整体视觉效果,细节部位要求不高。例如低分辨率视频电视的恢复、相机模糊图像的恢复等。

NTIRE2018这个比赛:

  • 这次比赛使用的数据集为DIV2K数据集[9],一共包含1000张2K分辨率的RGB图像,其中800张为训练集,100张为验证集,100张为测试集。
  • 评价标准使用了PSNR、SSIM。这就意味着这个场景下使用感知损失重建并不会是个很好的选择。大部分队伍以强化网络特征学习或者添加模糊算子先验为主
  • 经典的bicubic 8倍放大赛道上,Toyota-TI 提出的deep back-projection networks(DBPN)[10]获得了第一名,如下图。DBPN主要思想认为以往的CNN方法中,从LR到SR是一个完全上采用的过程,这过程中没有完全处理好LR到SR的与HR之间的差异。在高倍放大下更为显著。所以DBPN提供了一个up-down的映射单元,希望通过迭代上下交替采样的纠正反馈机制,恢复更好的细节特征。本次NTIRE2018的结果可以看出DBPN在高倍放大下比LapSR、EDSR拥有更好的效果。

这里写图片描述

团队在SR重建上,定位在两个优化问题:

  • 第一,个人理解上应该是与DBPN类似,如何在大尺寸放大获得更好的细节收益。

  • 第二问题则针对Mild、Difficult现实LR图像中存在的噪声,如何在放大图像的同时不放大噪声,减弱噪声对重建的影响。

  • 针对第一个问题,在bicubic上Pixel Overflow使用了EDSR模型,并使用了许多技巧例如RGB Layer Shuffle 、Per-Image Mean、Shift Residual Scaling Factor等.(NTIRE2018报告中介绍该团队使用了sobel滤波器提取SR和ground truth特征以强调边缘和细节的损失,但团队报告中似乎说明了这一方法并未有效)。

  • 针对第二个问题,团队使用在EDSR前增加了一个去噪网络,两者通过将去除输出层的去噪网络与去除输入层的EDSR串接实现端对端的模型训练。如图8,实验表明去除头尾的方式比直接串联两个网络的方式效果更好。

这里写图片描述

鸣谢

  1. Dong C, Chen C L,He K, et al. Image Super-Resolution Using Deep Convolutional Networks[J]. IEEETransactions on Pattern Analysis & Machine Intelligence, 2016,38(2):295-307.
  2. Dong C, Chen C L,Tang X. Accelerating the Super-Resolution Convolutional Neural Network[J].2016:391-407.
  3. Shi W, CaballeroJ, Huszar F, et al. Real-Time Single Image and Video Super-Resolution Using anEfficient Sub-Pixel Convolutional Neural Network[C]// IEEE Conference onComputer Vision and Pattern Recognition. IEEE Computer Society, 2016:1874-1883.
  4. Kim J, Lee J K,Lee K M. Accurate Image Super-Resolution Using Very Deep ConvolutionalNetworks[C]// IEEE Conference on Computer Vision and Pattern Recognition. IEEEComputer Society, 2016:1646-1654.
  5. Lim B, Son S, KimH, et al. Enhanced Deep Residual Networks for Single ImageSuper-Resolution[C]// Computer Vision and Pattern Recognition Workshops. IEEE,2017:1132-1140.
  6. Ledig C, Theis L,Huszar F, et al. Photo-Realistic Single Image Super-Resolution Using aGenerative Adversarial Network[J]. 2016:105-114.
  7. Johnson J, AlahiA, Li F F. Perceptual Losses for Real-Time Style Transfer andSuper-Resolution[J]. 2016:694-711.
  8. Sajjadi M S M,Schölkopf B, Hirsch M. EnhanceNet: Single Image Super-Resolution ThroughAutomated Texture Synthesis[J]. 2016.
  9. E. Agustsson andR. Timofte. NTIRE 2017 challenge on single image super-resolution: Dataset andstudy. In The IEEE Conference on Computer Vision and Pattern Recogni[1]tion(CVPR) Workshops, July 2017. 1, 2
  10. Haris M,Shakhnarovich G, Ukita N. Deep Back-Projection Networks ForSuper-Resolution[J]. 2018.
  11. Tai Y, Yang J, LiuX, et al. MemNet: A Persistent Memory Network for Image Restoration[J].2017:4549-4557.
  12. Lai W S, Huang JB, Ahuja N, et al. Deep Laplacian Pyramid Networks for Fast and AccurateSuper-Resolution[C]// IEEE Conference on Computer Vision and PatternRecognition. IEEE Computer Society, 2017:5835-5843.
  13. Zhang K, Zuo W,Chen Y, et al. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN forImage Denoising.[J]. IEEE Transactions on Image Processing, 2017,26(7):3142-3155.
  14. Zhang K, Zuo W,Zhang L. Learning a Single Convolutional Super-Resolution Network for MultipleDegradations[J]. 2017.
  15. Blau Y, MichaeliT. The Perception-Distortion Tradeoff[J]. 2017.
  16. NTIRE 2018Challenge on Single Image Super-Resolution: Methods and Results
Quartz是OpenSymphony开源组织在Job scheduling领域又一个开源项目,它可以与J2EE与J2SE应用程序相结合也可以单独使用。Quartz可以用来创建简单或为运行十个,百个,甚至是好几万个Jobs这样复杂的程序。Jobs可以做成标准的Java组件或 EJBs。 Quartz的优势: 1、Quartz是一个任务调度框架(库),它几乎可以集成到任何应用系统中。 2、Quartz是非常灵活的,它让您能够以最“自然”的方式来编写您的项目的代码,实现您所期望的行为 3、Quartz是非常轻量级的,只需要非常少的配置 —— 它实际上可以被跳出框架来使用,如果你的需求是一些相对基本的简单的需求的话。 4、Quartz具有容错机制,并且可以在重启服务的时候持久化(”记忆”)你的定时任务,你的任务也不会丢失。 5、可以通过Quartz,封装成自己的分布式任务调度,实现强大的功能,成为自己的产品。6、有很多的互联网公司也都在使用Quartz。比如美团 Spring是一个很优秀的框架,它无缝的集成了Quartz,简单方便的让企业级应用更好的使用Quartz进行任务的调度。   课程说明:在我们的日常开发中,各种大型系统的开发少不了任务调度,简单的单机任务调度已经满足不了我们的系统需求,复杂的任务会让程序猿头疼, 所以急需一套专门的框架帮助我们去管理定时任务,并且可以在多台机器去执行我们的任务,还要可以管理我们的分布式定时任务。本课程从Quartz框架讲起,由浅到深,从使用到结构分析,再到源码分析,深入解析Quartz、Spring+Quartz,并且会讲解相关原理, 让大家充分的理解这个框架和框架的设计思想。由于互联网的复杂性,为了满足我们特定的需求,需要对Spring+Quartz进行二次开发,整个二次开发过程都会进行讲解。Spring被用在了越来越多的项目中, Quartz也被公认为是比较好用的定时器设置工具,学完这个课程后,不仅仅可以熟练掌握分布式定时任务,还可以深入理解大型框架的设计思想。
[入门数据分析的第一堂课]这是一门为数据分析小白量身打造的课程,你从网络或者公众号收集到很多关于数据分析的知识,但是它们零散不成体系,所以第一堂课首要目标是为你介绍:Ø  什么是数据分析-知其然才知其所以然Ø  为什么要学数据分析-有目标才有动力Ø  数据分析的学习路线-有方向走得更快Ø  数据分析的模型-分析之道,快速形成分析思路Ø  应用案例及场景-分析之术,掌握分析方法[哪些同学适合学习这门课程]想要转行做数据分析师的,零基础亦可工作中需要数据分析技能的,例如运营、产品等对数据分析感兴趣,想要更多了解的[你的收获]n  会为你介绍数据分析的基本情况,为你展现数据分析的全貌。让你清楚知道自己该如何在数据分析地图上行走n  会为你介绍数据分析的分析方法和模型。这部分是讲数据分析的道,只有学会底层逻辑,能够在面对问题时有自己的想法,才能够下一步采取行动n  会为你介绍数据分析的数据处理和常用分析方法。这篇是讲数据分析的术,先有道,后而用术来实现你的想法,得出最终的结论。n  会为你介绍数据分析的应用。学到这里,你对数据分析已经有了初步的认识,并通过一些案例为你展现真实的应用。[专享增值服务]1:一对一答疑         关于课程问题可以通过微信直接询问老师,获得老师的一对一答疑2:转行问题解答         在转行的过程中的相关问题都可以询问老师,可获得一对一咨询机会3:打包资料分享         15本数据分析相关的电子书,一次获得终身学习
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SongpingWang

你的鼓励是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值