【软考】计算机组成与体系结构 - 数据的表示(进制的转换、原码、反码、补码、移码、浮点数运算)

本文详细介绍了计算机中进制转换的原理和方法,包括二进制、八进制、十六进制间的转换,以及R进制转换。同时,深入讲解了原码、反码、补码、移码的概念及其在数值表示范围内的应用。此外,文章还探讨了浮点数的运算机制,解析了浮点数的科学计数法形式及其在计算机中的运算规则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、进制的转换

1.1 为什么会提出计算机的进制转换?

计算机中经常用到的是二进制,生活中常用的是十进制,但是为了计算的方便,还提出了八进制、十六进制这些进制,那这些进制在计算某些问题有可能用到,比如说以下两个场景
(1)在存储体系这一块,有计算用多少块芯片组成多大的存储空间,这类问题就需要用到进制的问题。
(2)在网络部分去计算 IP 地址,子网掩码这些数据的时候也会涉及到进制
所以在这一块。进制转换往往是为后面的知识做铺垫的。

1.2 R进制转十进制

将每一位数字用Rk表示然后相加,k与该位与小数点的距离有关,小数点左边第一位为0,右边第一位为-1,往左递增,网往右递减,如:二进制数10100.01=1*24+1*22+1*2-2

1.3 十进制转R进制

整数位使用短除法,即将十进制数除以R再取余,直至余数为零,然后将余数由下往上按顺序排列,小数位乘以R,每乘一次就取它的整数位( 整数位为零时就取零),直至小数位为零,然后将取得的整数位由上往下排列即可。

1.4 二进制转八进制及二进制转十六进制

将二进制数以小数点为界向左及向右每三个一组(转八进制),或者每四个一组(转十六进制),缺的数用零来补充,然后依次转化为相应的进制数然后按顺序排列即可。

二、数据的表示之原码、反码、补码、移码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

本本本添哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值