【人工智能】大模型蒸馏是一种将复杂模型(教师模型)的知识高效迁移至轻量级模型(学生模型)的技术,通过优化知识传递路径和模型结构,在保持性能的同时显著降低计算成本。

大模型蒸馏是一种将复杂模型(教师模型)的知识高效迁移至轻量级模型(学生模型)的技术,通过优化知识传递路径和模型结构,在保持性能的同时显著降低计算成本。大模型蒸馏已从单纯的模型压缩演进为复杂知识体系的精准迁移技术,其核心在于通过架构创新、动态路由和跨模态对齐,实现性能、效率与伦理的多重平衡。未来,随着联邦学习、自监督学习和硬件加速技术的融合,蒸馏将成为释放AI普惠价值的关键引擎,推动大模型能力在更多场景的规模化应用。以下是其核心原理、最新进展及关键应用的详细解析:

一、核心原理与技术架构

1. 知识传递的本质

传统蒸馏通过软标签(Soft Targets)传递教师模型的决策逻辑。例如,教师模型对模糊菠萝图片的输出概率分布(如80%菠萝、15%松果、5%榴莲)包含纹理和颜色的关联信息,学生模型通过学习这种分布能更精准识别变异样本。现代方法进一步引入中间层特征蒸馏,如DeepSeek将教师模型Transformer层的注意力权重作为监督信号,引导学生模型学习结构化知识。

2. 渐进式蒸馏策略

  • 模仿蒸馏:学生模型先学习教师模型的通用知识,如通过图像-标题对数据训练视觉-语言基础表征。
  • 偏好蒸馏:结合直接偏好优化(DPO),让学生模型区分教师模型的“好回答”与“坏回答”,减少幻觉。例如,LLaVA-
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

本本本添哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值