大模型蒸馏是一种将复杂模型(教师模型)的知识高效迁移至轻量级模型(学生模型)的技术,通过优化知识传递路径和模型结构,在保持性能的同时显著降低计算成本。大模型蒸馏已从单纯的模型压缩演进为复杂知识体系的精准迁移技术,其核心在于通过架构创新、动态路由和跨模态对齐,实现性能、效率与伦理的多重平衡。未来,随着联邦学习、自监督学习和硬件加速技术的融合,蒸馏将成为释放AI普惠价值的关键引擎,推动大模型能力在更多场景的规模化应用。以下是其核心原理、最新进展及关键应用的详细解析:
一、核心原理与技术架构
1. 知识传递的本质
传统蒸馏通过软标签(Soft Targets)传递教师模型的决策逻辑。例如,教师模型对模糊菠萝图片的输出概率分布(如80%菠萝、15%松果、5%榴莲)包含纹理和颜色的关联信息,学生模型通过学习这种分布能更精准识别变异样本。现代方法进一步引入中间层特征蒸馏,如DeepSeek将教师模型Transformer层的注意力权重作为监督信号,引导学生模型学习结构化知识。
2. 渐进式蒸馏策略
- 模仿蒸馏:学生模型先学习教师模型的通用知识,如通过图像-标题对数据训练视觉-语言基础表征。
- 偏好蒸馏:结合直接偏好优化(DPO),让学生模型区分教师模型的“好回答”与“坏回答”,减少幻觉。例如,LLaVA-
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



