- 博客(1911)
- 收藏
- 关注
原创 【项目实战】与车相关的常用英文词汇对照表
轮胎:Tire备胎:Spare Tire钢圈、轮毂:Wheel Rim轮辋直径:Rim Diameter胎侧:Sidewall胎圈:Bead轮眉、翼子板:Fender轮毂:Wheel Rim轮胎:Tire胎体:Carcass轮胎类型:Tire Type轮胎尺寸:Tire Size轮胎宽度:Tire Width轮胎压力、胎压:Tire Pressure轮胎内压:Internal Pressure。
2024-05-09 15:58:21
300
原创 【项目实战】车联网常用词汇大杂烩
简写英文全拼中文解释IVI信息娱乐系统CANController Area NetworkHUD抬头显示(车辆平视显示系统)CDC座舱域控制器AOSPAndroid Open Source ProjectGSMGlobal System for Mobile Communications全球移动通信系统TCUTelematics Control Unit远程信息控制单元E/EA电子电气架构ADASAdva
2023-09-01 08:34:48
508
原创 【项目实战】MySQL的二进制日志(Binary Log,简称binlog)是MySQL数据库系统中一种至关重要的日志类型,它以二进制格式记录了所有对数据库结构或数据进行修改的操作。
MySQL的二进制日志(Binary Log,简称binlog)是MySQL数据库系统中一种至关重要的日志类型,它以二进制格式记录了所有对数据库结构或数据进行修改的操作。具体来说,binlog会记录所有的DDL(数据定义语言)和DML(数据操作语言)语句,但不会记录诸如SELECTSHOW等查询操作。binlog不仅对于数据库的安全性和可靠性至关重要,而且在多个实际应用场景中发挥着不可或缺的作用。binlog作为MySQL的一个核心特性,其功能远不止于此。
2025-01-24 21:59:09
12
原创 【项目实战】在Windows 10系统中通过桌面的控制面板图标进入凭据管理器,并删除与特定账户相关的所有凭据。
如果您已经在桌面上显示了控制面板图标,可以直接双击该图标打开控制面板。
2025-01-24 21:58:30
12
原创 【思考模型框架】BANI时代/模型,一个用来描述当今世界复杂性和不确定性的框架,旨在超越VUCA模型。
BANI(Brittleness、Anxiety、Nonlinearity、Incomprehensibility)模型是一个用来描述当今世界复杂性和不确定性的框架。它由美国未来学家贾迈斯·卡西欧提出,旨在超越VUCA(Volatility, Uncertainty, Complexity, Ambiguity)模型,更精确地捕捉现代社会的特点。BANI强调了脆弱性(系统的易碎性)、焦虑(面对未知时的心理状态)、非线性(因果关系的复杂性)和不可理解性(情况过于复杂难以理解)这四个维度。
2025-01-24 21:58:12
789
原创 【思考模型框架】VUCA时代(易变性、不确定性、复杂性、模糊性)描述了当今全球化时代下快速变化且难以预测的社会、经济和技术环境。
VUCA是四个英文单词的首字母缩写,代表着易变性(Volatility)、不确定性(Uncertainty)、复杂性(Complexity)和模糊性(Ambiguity)。这些特质共同描述了当今全球化时代下快速变化且难以预测的社会、经济和技术环境。
2025-01-24 21:57:37
244
原创 【项目实战】Celery: Python语言实现的分布式任务队列,适合异步处理任务。
Celery 是一个基于 Python 实现的分布式任务队列,它专注于异步处理任务,并且也支持任务调度。作为一种简单、灵活且可靠的工具,Celery 可以帮助开发者轻松实现任务的异步处理。在 web 开发中,当遇到一些消耗资源和时间的操作时,使用 Celery 可以将这些操作作为异步任务处理,从而避免阻塞主应用程序,提升用户体验。Celery 提供了一套完整的异步任务处理机制,能够有效地解决许多复杂的业务逻辑问题,特别是在涉及到耗时操作的情况下,极大地提高了系统的效率和服务质量。
2025-01-24 21:56:57
728
原创 【人工智能】Spring AI Alibaba,一个面向 Java 开发者的开源框架,它旨在简化将人工智能(AI)功能集成到应用程序中的过程。
Spring AI Alibaba 是一个面向 Java 开发者的开源框架,它旨在简化将人工智能(AI)功能集成到应用程序中的过程。该项目基于 Spring AI 构建,并且是阿里云通义系列模型及服务在 Java AI 应用开发领域的最佳实践。Spring AI Alibaba 的目标是为开发者提供一套高层次的 AI API 抽象以及与云原生基础设施的深度集成方案,从而帮助他们快速构建智能应用。
2025-01-24 21:56:43
609
原创 【项目实战】在Java生态系统中,Java SE、Tomcat、Jetty等Servlet容器与JBoss、WebSphere等Java EE服务器各自扮演着不同的角色。
在Java生态系统中,Java SE(Standard Edition)、Tomcat、Jetty等Servlet容器与JBoss、WebSphere等Java EE(Enterprise Edition)服务器各自扮演着不同的角色,并且它们之间存在一定的层次关系和技术上的差异。
2025-01-24 21:56:25
5
原创 【项目实战】将 Flowable 工作流引擎集成到 Spring Boot 应用程序中的启动器
Flowable支持多种方式来定义和部署流程,包括但不限于上传XML文件到引擎中进行解析和部署。一旦部署完成,就可以根据需要启动流程实例。此外,还可以暂停或激活某些流程,甚至整个部署包,或者获取相关的资源文件。你可以使用 BPMN 2.0 标准来定义工作流。将这个文件放在目录下(如果目录不存在,请创建)。</</
2025-01-24 21:56:09
9
原创 【项目实战】Apollo(阿波罗)是携程框架部门研发的一款开源配置管理中心,旨在解决分布式系统中应用配置管理的问题。
为了更好地服务于第三方应用,Apollo提供了一套HTTP RESTful接口,称为开放平台API。这套API允许外部应用程序自行管理其配置数据,包括查询、添加、修改和删除等操作。通过这种方式,不仅可以简化配置管理工作流程,而且还能提高自动化程度,减少人为错误的可能性。使用Apollo开放平台API前,首先需要注册一个第三方应用并获取唯一的AppId,接着为该应用生成一个用于身份验证的Token。有了Token之后,第三方应用就可以调用Apollo提供的各种RESTful接口了。
2025-01-24 21:55:56
6
原创 【项目实战】Miniforge安装和管理python
Miniforge 是一个轻量级的 Conda 安装器,它提供了一种快速、独立的方法来安装和管理 Python 的科学计算环境。Miniforge 由社区维护,并专注于兼容 ARM 架构的设备(如 Apple M1/M2/M3 芯片)和其他 CPU 架构。与 Anaconda 和 Miniconda 相比,Miniforge 提供了几个显著的优势,包括更小的安装包、更快的安装速度、较少的磁盘占用以及使用 conda-forge 作为默认的软件源。
2025-01-24 21:55:22
998
原创 【项目实战】社会工程攻击,一种利用人类心理弱点而非技术漏洞来获取敏感信息或访问权限的攻击形式。
社会工程攻击是一种利用人类心理弱点而非技术漏洞来获取敏感信息或访问权限的攻击形式。这类攻击往往通过操纵受害者的行为,使其自愿地泄露信息或执行某些动作,从而达到攻击者的非法目的。社会工程学并非一门严格的科学,而更像是一门艺术与技巧,它依赖于对人性弱点的理解和应用。面对日益复杂的社会工程攻击,持续的学习、谨慎的态度以及综合性的防护策略是必不可少的。只有当每个人都意识到自身在网络空间中的责任时,才能构建更加坚固的安全屏障。
2025-01-24 21:46:23
6
原创 【项目实战】FlinkCDC,是Apache Flink生态中的一项关键技术,旨在实现实时数据变更捕获与处理。
FlinkCDC,即Flink Change Data Capture。FlinkCDC,是Apache Flink生态中的一项关键技术,旨在实现实时数据变更捕获与处理。FlinkCDC,允许从关系型数据库中实时捕获插入、更新和删除事件,从而实现低延迟的数据同步。FlinkCDC,对于构建实时数据管道至关重要,因为它能确保源数据库中的任何变动都能迅速且准确地反映到目标系统中。FlinkCDC,为现代企业提供了高效、可靠且易于使用的工具,用于实现实时数据同步及分析。
2025-01-23 16:06:49
14
原创 【人工智能】使用 LangGraph 构建生产级 AI Agent
LangGraph 的灵感来源于 Pregel 和 Apache Beam,这两个框架分别用于大规模图处理和构建可扩展的数据处理管道。LangGraph 的公共接口灵感来自于 NetworkX,这是一个用于复杂网络分析的 Python 库。因此,LangGraph 结合了这三个项目的优点,提供了灵活性和强大的功能来操作图数据结构。LangGraph 的核心思想是把 Agent 的工作流以图(graph)的方式进行建模。
2025-01-23 15:58:55
631
原创 【人工智能】AutoGen,由微软开发的框架,它允许用户创建和管理多个自主代理(agents),以协同完成复杂的任务。
AutoGen 框架是一个由微软开发的框架,它允许用户创建和管理多个自主代理(agents),以协同完成复杂的任务。AutoGen 框架不仅灵活而且强大,支持多种类型的智能体以及它们之间的交互模式。以下是关于 AutoGen 的一些基础概念和技术细节。AutoGen 框架 提供了一系列强大的功能来帮助开发者快速搭建起具备高度智能化水平的应用程序。无论是简单的问答系统还是复杂的业务流程自动化,AutoGen 都能提供相应支持,极大地促进了人工智能技术的发展与应用。
2025-01-23 15:51:43
437
原创 【人工智能】微软的 AutoGen 是一个强大的工具,它能帮助我们轻松创造新一代的智能对话应用,这些应用基于多个虚拟角色之间的交流,而且不需要太多复杂的操作。
AutoGen 是微软推出的一个开源框架,旨在简化复杂的工作流程,特别是针对大型语言模型(LLM)应用的开发。它通过创建多个可定制、可对话的代理(agents),使得开发者能够更容易地构建和管理这些智能体之间的交互,从而实现更高效的自动化任务处理。AutoGen Studio 则是在 AutoGen 框架基础上发展出来的一个图形用户界面工具,为开发者提供了更加直观的操作方式来设计多智能体协作的工作流。
2025-01-23 13:49:00
505
原创 【项目实战】HTTPie,简单易用的命令行 HTTP 客户端
HTTPie ,是一个简单易用的命令行 HTTP 客户端,它旨在为 CLI(命令行界面)与 Web 服务之间的交互提供一个更为友好的界面。HTTPie ,相比于传统的命令行工具如curl或wget,HTTPie 提供了更加直观和简洁的语法,使得即使是初学者也能快速上手。HTTPie ,支持颜色化输出、会话持久化等功能,这些特性共同提升了用户体验。
2025-01-23 11:44:24
11
原创 【人工智能】Open WebUI 安装指南 ( 基于Docker下载和使用Open WebUI 、通过本地运行项目源码进行搭建Open WebUI)
Open WebUI 是一个可扩展、功能丰富且用户友好的自托管 WebUI,旨在完全离线操作。它支持各种 LLM 运行程序,包括 Ollama 和 OpenAI 兼容的 API。社区:https://openwebui.com/
2025-01-23 11:31:31
1050
原创 【人工智能】【好物推荐】Jina AI Reader:网络内容处理的革新利器,助力大型语言模型高效处理网络内容
在信息爆炸的时代,互联网上的数据量呈指数级增长,如何高效地从这些海量的信息中提取有价值的内容成为了技术领域的一个重要课题。Jina AI团队推出的Reader工具,正是为了解决这一挑战而设计的。它不仅简化了网页内容向大型语言模型(LLM)友好格式的转换过程,还通过一系列创新特性提升了自动化系统处理和理解网络内容的能力。Jina AI开发的Reader是一款革命性的工具,它不仅解决了当前存在的问题,而且为未来的AI应用奠定了坚实的基础。
2025-01-23 11:26:21
559
原创 【项目实战】在 Node.js 项目中,`.env` 文件被广泛用于存储环境变量,这是一种将配置信息与代码分离的最佳实践。
在 Node.js 项目中,.env文件被广泛用于存储环境变量,这是一种将配置信息与代码分离的最佳实践。通过这种方式,开发者可以确保敏感数据如 API 密钥、数据库密码等不会硬编码到源代码中,从而提高了项目的安全性,并且方便了不同环境(例如开发、测试和生产)之间的切换。在 Node.js 项目中,通常使用.env文件来存储环境变量。在 Node.js 项目中使用.env文件是一种有效且安全的方式来管理环境变量。通过结合dotenv。
2025-01-23 11:20:37
7
原创 【项目实战】Java 记录(`record`)是一种特殊的类,它主要用于表示不可变的数据载体,简化了创建数据携带对象的过程,减少了样板代码的编写。
Java 记录(record)是 Java 14 引入的一个预览特性,并在 Java 16 中正式成为标准的一部分。记录是一种特殊的类,它主要用于表示不可变的数据载体。记录简化了创建数据携带对象的过程,减少了样板代码的编写。通过使用记录,你可以快速地创建出具有完整功能的数据载体,同时保持代码简洁清晰。这对于处理大量数据模型时非常有用。下面是一些关于如何使用 Java 记录的基本信息和示例。// 可以添加自定义方法。
2025-01-23 11:16:34
5
原创 【人工智能】Open WebUI 支持完全离线操作,并兼容多种LLM运行器,如Ollama和OpenAI API,旨在使用它来管理和使用大型语言模型,确保数据隐私的同时提供灵活多样的交互方式。
要在 PyCharm 中下载和使用 Open-WebUI,您需要按照以下步骤进行操作。Open-WebUI 是一个用于管理和使用大型语言模型(LLM)的 Web 界面,通常与 Ollama 等工具配合使用。通过以上步骤,您可以在 PyCharm 中下载和配置 Open-WebUI,并使用它来管理和使用大型语言模型。如果有任何问题或需要进一步的帮助,请随时提问。
2025-01-23 10:09:51
674
原创 【项目实战】Springboot整合SnakeYAML库,来读取YAML文件中的配置信息,并访问特定的配置项
YAML(YAML Ain’t Markup Language)是一种人类可读的数据序列化标准,常用于配置文件。SnakeYAML 是一个用于 Java 编程语言的库,它允许您解析(读取)和生成(写入)YAML 格式的文档。在Java中读取YML文件的配置值,可以使用SnakeYAML库。这个库提供了简单且强大的API来解析和生成YAML文档。
2025-01-23 10:04:22
10
原创 【项目实战】 `mvnw compile` 是 Maven Wrapper 的一个命令,用于编译项目中的源代码
通过在项目的根目录下提供可执行脚本来实现这一点,这些脚本会自动下载并使用正确的Maven版本来运行构建。相比之下,“正常的启动”通常指的是运行一个已经编译好的应用程序。主要是用来编译源码,而“正常启动”则涉及到编译、可能的打包过程以及最终应用程序的执行。) 是一个允许用户在没有事先安装Maven的情况下也能运行Maven构建的工具。是 Maven Wrapper 的一个命令,用于编译项目中的源代码。
2025-01-23 10:00:53
10
原创 【人工智能】Xinference,用户可以轻松地一键下载和部署内置的各种前沿开源模型,使得本地模型部署变得非常简单。
Xinference(https://github.com/xorbitsai/inference) 使得本地模型部署变得非常简单。用户可以轻松地一键下载和部署内置的各种前沿开源模型,例如 Llama 2(https://ai.meta.com/llama/)、chatglm2、通义千问等。为了让使用 OpenAI API 的用户能够无缝迁移,Xinference 提供了与 OpenAI 兼容的 RESTful 接口。
2025-01-23 09:56:27
90
原创 【人工智能】Transformer架构,引入自注意力机制和位置编码,改进了 RNN 和 LSTM 不可并行计算的缺陷。
Transformer 架构,2017 年 Google 提出。Transformer 架构,是一种深度学习模型,于 2017 年被引入,主要用于处理序列数据如文本。Transformer 架构,在处理诸如翻译或文本生成等语言理解任务时表现出了卓越的效果。Transformer 架构,引入自注意力机制和位置编码,改进了 RNN 和 LSTM 不可并行计算的缺陷。Transformer 架构,核心优势在于其能同时处理输入序列的所有部分,这大大加快了训练过程并提高了模型处理长距离依赖的能力。
2025-01-23 09:56:09
389
原创 【项目实战】PyInstaller,将 Python 脚本转换为 Windows 可执行文件(.exe)的一个常用工具
是将 Python 脚本转换为 Windows 可执行文件(.exe)的一个常用工具。
2025-01-23 09:54:06
322
原创 【人工智能】命名实体识别(Named Entity Recognition, NER)和依存句法分析(Dependency Parsing)在自然语言处理(NLP)中负责理解和解析文本的不同方面
命名实体识别是一项信息提取任务,旨在从文本中识别出具有特定意义的实体,并将这些实体分类到预定义的类别中。常见的类别包括人名、地名、组织机构名、日期、货币金额等。
2025-01-22 23:11:28
273
原创 【人工智能】OpenAI 目前提供的多模态能力的一个总览(多模态:GPT-4 with Vision/GPT-4V、文生图:DALL·E 3、文字配音:TTS、语音识别:Whisper)
截至2025年1月,OpenAI 提供了一系列多模态能力和工具,这些能力涵盖了文本、图像、语音等多个方面。需要注意的是,随着技术的进步,这些产品和服务可能会不断更新和发展,添加新的特性和能力。如果您需要最新的信息或特定功能的详细指南,请参考 OpenAI 的官方文档或公告。
2025-01-22 23:08:12
223
原创 【人工智能】使用tiktoken库来计算tokens数量,tiktoken由 OpenAI 提供的,主要用于与他们的 API 交互时估计 token 的数量。
是一个用于计算文本编码为特定模型的 tokens 数量的库是由 OpenAI 提供的,主要用于与他们的 API 交互时估计 token 的数量。以下是如何使用 来计算 token 数量的基本步骤:您可以通过 pip 安装 tiktoken 库。2.2. 导入必要的模块并初始化编码器:使用 时,您需要选择一个编码方式。这通常取决于您打算使用的语言模型。例如,对于 或 模型,您可以使用 编码器。2.3. 对文本进行编码并计算 token 数量:接下来,您可以将您的文本字符串传递给编码器,并计
2025-01-22 23:04:42
229
原创 【人工智能】网红项目 Auto-GPT 项目定位与价值解读,Auto-GPT代表了一种尝试构建自主人工智能(AI)代理(Agent)的方法。
Auto-GPT 是一个开源项目,它代表了一种尝试构建自主人工智能(AI)代理(Agent)的方法。该项目通常基于强大的语言模型,如GPT-4,并结合各种工具和接口,以实现更高级别的自动化和智能化任务执行。
2025-01-22 23:01:19
269
原创 【人工智能】AI智能体(AI Agent)主要由多模态大模型(LMM)、长期记忆(Memory)、规划(Planning)和工具使用(Tool Use)四个部分组成。
Agents(智能体或者代理)的核心思想是以大模型为核心。Agents 可以根据用户的输入选择工具、方法,并自行确定解决步骤,最终完成用户预期的目标并返回结果。在未来,上网的人都将拥有更强大的人工智能驱动的个人助手。
2025-01-22 22:57:31
261
原创 【人工智能】接入OpenAI-HK实现OpenAI的中转调用操作指南
计费采用积分消耗制,最低10元起充 无时间限制助您快速、低成本构建AI应用。
2025-01-22 22:31:58
287
原创 【人工智能】OpenAI 开发
US$5.00/1M input tokens”在GPT-4o中表示按百万个输入token来计费,每百万个输入token的计算费用为5美元。这种计费方式让用户能够更透明地了解和管理使用这些高级自然语言处理模型的成本。通过理解token的分割方式和具体的使用范例,用户可以更有效地计划和控制使用成本。GPT-4 可能提供两种不同的定价模式,分别为标准定价和批量API(Batch API)定价。让我们详细解释这些定价模式及其区别,以及为什么价格不同。两个不同的定价方案主要区别在于使用模式和规模的不同。
2025-01-22 22:30:26
440
原创 【年度总结】2024年技术付费专栏的奇妙旅程:从摸索到精通的大冒险
嘿,各位技术界的小伙伴们!你有没有发现,现在这个世界就像是被一群热爱敲代码、捣鼓电子玩意儿的极客们给占领了?随着信息技术像野草一样疯狂生长,越来越多的技术宅和专业大神开始玩起了新花样——通过技术付费专栏来展示他们脑中的宝藏知识和独到见解。这不仅让别人有了“啊哈!”时刻,技能up up的机会,更是让这些分享者找到了实现个人价值的新大陆。今天,我就像一位老船长,要带着大家回顾我在2024年这片浩瀚的知识海洋中探索技术付费专栏的航程。这一路走来,有欢笑,有泪水,也有无数次想要把电脑砸了重练的冲动瞬间。
2025-01-22 21:10:42
1612
4
原创 动手学RAG
在自然语言处理领域,大型语言模型(LLM)如GPT-3、BERT等已经取得了显著的进展,它们能够生成连贯、自然的文本,回答问题,并执行其他复杂的语言任务。然而,这些模型存在一些固有的局限性,如“模型幻觉问题”、“时效性问题”和“数据安全问题”。RAG技术结合了大型语言模型的强大生成能力和检索系统的精确性。它允许模型在生成文本时,从外部知识库中检索相关信息,从而提高生成内容的准确性、相关性和时效性。这种方法不仅增强了模型的回答能力,还减少了生成错误信息的风险。RAG技术基本原理和技术流程。
2025-01-22 21:08:25
481
原创 【人工智能】“Builder‘s mindset“(建设者心态),转变思维方式,从简单的执行者转变为更具前瞻性和创造力的角色。
过去,许多人在工作中可能采取了一种较为被动的态度,即仅在遇到问题时才去解决它们,有时甚至在接受了某些限制或痛点的情况下继续工作,只求完成任务。然而,在AI技术迅速发展的背景下,这样的工作方式可能不再足够。“Builder’s mindset”(建设者心态)指的是以一种积极主动的态度去面对工作和挑战,不仅限于解决问题,更在于发现潜在的问题并探索创新的解决方案。总之,“建设者心态”强调的是一个从被动到主动的转变,它鼓励人们像构建者一样看待周围的世界,相信通过自己的努力可以让环境变得更好。
2025-01-22 19:19:20
236
原创 【人工智能】OpenAI常用参数详解(max_tokens、temperature、n、top_p、presence_penalty、frequency_penalty、stream)
控制文本生成的随机性。值范围通常在0到1之间。值越大,生成文本越随机;值越小,生成文本越确定。模型对每个输入生成的回答数量。设置为n就会生成n个独立的回答。确定生成文本时考虑的token累计概率。值为0到1之间,常用来替代温度设置。top_p为0.9时,模型仅在最有可能的token集合(累计概率达到0.9)中进行选择。影响模型生成新主题内容的倾向。值范围通常在-2.0到2.0之间。较高的值鼓励模型生成前面未出现过的新内容。影响模型是否重复使用某些词或短语。值范围通常在-2.0到2.0之间。
2025-01-22 17:45:52
762
原创 【好物推荐】CSDN博客文章解析 https://mark.cuckooing.cn/
博客文章提取:用户可以轻松复制博客文章,并支持解析提取CSDN、博客园、简书等平台的文章。所有文章都支持以Markdown格式下载,格式统一,复制时不会出现格式错乱现象。
2025-01-22 17:33:23
9
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅