Spark API 之 reduce、reduceByKey 、 mapvalues

转:http://blog.csdn.net/guotong1988/article/details/50555185

reduce(binary_function) 
reduce将RDD中元素前两个传给输入函数,产生一个新的return值,新产生的return值与RDD中下一个元素(第三个元素)组成两个元素,再被传给输入函数,直到最后只有一个值为止。

val c = sc.parallelize(1 to 10)
c.reduce((x, y) => x + y)//结果55
 
 
  • 1
  • 2
  • 1
  • 2

具体过程,RDD有1 2 3 4 5 6 7 8 9 10个元素, 
1+2=3 
3+3=6 
6+4=10 
10+5=15 
15+6=21 
21+7=28 
28+8=36 
36+9=45 
45+10=55


reduceByKey(binary_function) 
reduceByKey就是对元素为KV对的RDD中Key相同的元素的Value进行binary_function的reduce操作,因此,Key相同的多个元素的值被reduce为一个值,然后与原RDD中的Key组成一个新的KV对。

val a = sc.parallelize(List((1,2),(1,3),(3,4),(3,6)))
a.reduceByKey((x,y) => x + y).collect
 
 
  • 1
  • 2
  • 1
  • 2

//结果 Array((1,5), (3,10))

mapValues(function) 
原RDD中的Key保持不变,与新的Value一起组成新的RDD中的元素。因此,该函数只适用于元素为KV对的RDD。

val a = sc.parallelize(List("dog", "tiger", "lion", "cat", "panther", " eagle"), 2)
val b = a.map(x => (x.length, x))
b.mapValues("x" + _ + "x").collect
 
 
  • 1
  • 2
  • 3
  • 1
  • 2
  • 3

//"x" + _ + "x"等同于everyInput =>"x" + everyInput + "x" 
//结果 
Array( 
(3,xdogx), 
(5,xtigerx), 
(4,xlionx), 
(3,xcatx), 
(7,xpantherx), 
(5,xeaglex) 
)


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值