KMP算法——字符串匹配

版权声明:hhhhh https://blog.csdn.net/WT_cnyali/article/details/69359133

  我先要对网上那些所谓“教你从头到尾彻底理解”、“如果你看不懂**,那就看一看这篇文章”、“绝对原创,绝对通俗易懂”、“如果都说成这样你都不明白,那么***”这些言论批判一番。如果你的文章真的写的好,那还没什么,可问题是你的文章在关键处出现了错别字、用一些故作高深的文字、甚至还出现了错误,那我也不知道你是有多厉害。标题党就是fxxk

上述是废话2333333

  KMP算法其实就是一种字符串匹配的算法。具体说来,就是判断一个长度是M的模式串(tar)是否是另一个长度为N的主串(pat)的子串。
  我们首先可以思考一下暴力算法。
  直接每一位比较,失配后再从下一位开始继续比较。O(N×M)的时间复杂度。还是比较简单的。
  这样的复杂度对于稍微大一点的数据规模就过不去了。我们需要一种更高级的算法。
  暴力算法有没有可以优化的地方呢?考虑一下:对于一个位置,如果我们已经匹配了前面的一小段,到中间某处才失配,我们是否有必要从下一个位置继续匹配?我们可不可以跳过后面的一些位置,接着从一个“有意义”的位置开始继续匹配?
假设模式串的子串[1,i]ABCABC(ABC代表这个子串的前面后面都是完全一样的部分,那些*代表中间一些不同的字符),当我们在模式串的i+1位置失配时,下一次匹配不用在从模式串的开头开始比较了,为什么不从模式串的4位置开始比较呢(因为在i+1位置失配时,最后的那个ABC一定已经匹配,而前面的也是ABC,不用再次比较)?

  这样就可以大大减少我们的比较次数,模式串的子串[1,i]中前面后面相同部分(称为公共前后缀)的长度记为next[i]
  但是我怎么知道next[i]的值呢?

  我们其实可以递推计算。
  假设对于位置j,我们已经知道next[j],现在求next[j+1]
  
  考虑两种情况:先设k=Next[j]
    如果tar[k+1]=tar[j+1],那么Next[j+1]=Next[j]+1;(显然)
    否则
    现在比较显然的是,Next[j+1]<Next[j]
    而且,j+1的公共前后缀一定也属于某个公共前后缀(因为除去最后新加入的tar[j+1],前面的某个到j的后缀也有对应的相同的前缀)。
    所以,一直寻找更小的公共前后缀,直到其前缀尾随的那个字符与tar[j+1]相同。

//计算Next[]
Next[0] = 0 ;
for ( i = 2, j = 0 ; i <= m ; i ++ ) {
    for ( ; j && tar[j+1] != tar[i] ; j = Next[j] ) ;
    if ( tar[j+1] == tar[i] ) ++ j ;
    Next[i] = j ;
}

利用Next匹配:

for ( i = 1 ; i <= n ; i ++ ) {
    for ( ; j && tar[j+1] != pat[i] ; j = Next[j] ) ;
    if ( tar[j+1] == pat[i] ) ++ j ;
    if ( j == m ) {
        printf ( "%d\n", i-j+1 ) ;
        j = Next[j] ;
    }
}

短小而精悍的KMP。

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页