[USACO12FEB]Nearby Cows solution 题解 [洛谷3047]

Description

给出一棵n个点的树,每个点上有C_i头牛,问每个点k步范围内各有多少头牛。

  • 这道题分为两部分

  • 第一步
    先转化成有根树,然后再计算出以每个点为根的子树中 往下 走j步得到的牛的总数。
    树形DP完成,弱智公式

    f[x][j]=usonxf[u][j1]+f[x][0]

    时间复杂度O(n×k)

  • 第二步
    每个点往下的已经算好了,接下来就算往上以及拐来拐去的。反正 k 不大,暴力往上跳 k 步就行了,跳的时候统计。
    如何统计呢?
    假设现在跳了 j 步到达点 u,那么再加上 f[u][kj],有一部分被重复加了,再减掉,就是 f[sonu][kj1],其中 sonu代表在往上跳的过程中经过的u的儿子,不难发现是唯一的。
    时间复杂度O(n×k)

#include <bits/stdc++.h>
using namespace std ;
void Read ( int &x, char c = getchar() ) {
    for ( x = 0 ; !isdigit(c) ; c = getchar() ) ;
    for ( ; isdigit(c) ; c = getchar() ) x = 10*x + c - '0' ;
}
const int maxn = 1e5+5, maxm = 25 ;
int n, m, f[maxn][maxm] ;
int e, be[maxn], nxt[maxn<<1], to[maxn<<1], fa[maxn] ;
void add ( int x, int y ) {
    to[++e] = y ;
    nxt[e] = be[x] ;
    be[x] = e ;
}
void dfs ( int x ) {
    int i, u, j ;
    for ( i = be[x] ; i ; i = nxt[i] ) {
        u = to[i] ;
        if ( u == fa[x] ) continue ;
        fa[u] = x ;
        dfs(u) ;
    }
    for ( j = 1 ; j <= m ; j ++ ) {
        f[x][j] = f[x][0] ;
        for ( i = be[x] ; i ; i = nxt[i] )
            if ( to[i] != fa[x] ) f[x][j] += f[to[i]][j-1] ;
    }
}
int calc ( int x ) {
    int i, u, v = 0, stp = m ;
    v = f[x][m] ;
    for ( u = fa[x] ; fa[x] && stp>=0 ; x = u, u = fa[x], stp-- ) {
        v += f[u][stp-1]-f[x][stp-2] ;
    }
    return v ;
}
int main() {
    int i, j, k, x, y ;
    Read(n) ; Read(m) ;
    for ( i = 1 ; i < n ; i ++ ) {
        Read(x) ; Read(y) ;
        add ( x, y ) ;
        add ( y, x ) ;
    }
    for ( i = 1 ; i <= n ; i ++ ) Read(f[i][0]) ;
    dfs(1) ;
    for ( i = 1 ; i <= n ; i ++ ) printf ( "%d\n", calc(i) ) ;
    return 0 ;
}
阅读更多
版权声明:hhhhh https://blog.csdn.net/WT_cnyali/article/details/77387981
文章标签: 树形DP 暴力
想对作者说点什么? 我来说一句

洛谷P1015回文数C++解

2018年03月20日 673B 下载

没有更多推荐了,返回首页

不良信息举报

[USACO12FEB]Nearby Cows solution 题解 [洛谷3047]

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭