[USACO08NOV]玩具Toys [洛谷2917] [bzoj1229]

  • 题意
    餐巾计划问题(费用流经典题),数据加强(1N105)。

  • Solution
    f(x)代表购买x个新玩具所需要的最小花费,那么f是一个单峰的函数,可以使用三分法求解。
    f(x)可以通过贪心的方法求出,这个稍后详细介绍。

————

  • 接下来简单说明一下这个单峰。假设当x=t时有最优解f(t)。若取x=t+1,那么就会多了一个新买的玩具没有用,浪费了,不会出现更优解,不难发现当x=t+k(kN),该结论均成立;若取x=t1,考虑使用费用流求解时,也就是有有一条在最短路上的边没有走,可能走的是其他最短路径或者次短路,也不会出现更优解,x=tk时类似。

————

  • 然后说说贪心法计算f(x)。为了方便描述,不妨设c1c2不难发现,当前所需要的玩具,首先应该考虑已经购买但是还没有使用的新玩具,因为额外花费为0;在这之后,再考虑便宜点的c1,而且是离当前越近越好,因为再往前的天数可能没有足够的脏玩具用来洗;最后再考虑贵的c2,这时候应该离当前越远越好,因为越往前靠的话,洗好的玩具就有更大的机会用来用c1洗,可以为以后减少花费。
#include <bits/stdc++.h>
using namespace std ;
void Read ( int &x, char c = getchar() ) {
    for ( x = 0 ; !isdigit(c) ; c = getchar() ) ;
    for ( ; isdigit(c) ; c = getchar() ) x = 10*x + c - '0' ;
}
const int maxn = 1e5+5, zhf = 0x3f3f3f3f ;
int n, m, t[maxn], s[maxn], tc, n1, n2, c1, c2 ;
struct node {
    int id, val ;
} ;
deque <node> Q ;
int calc ( int x ) {
    int rec = (tc - c2)*x, i, k ;
    node tmp ;    
    Q.clear() ;    
    Q.push_front( (node){-n2, x} ) ;    
    for ( i = 1 ; i <= n ; i ++ ) {
        m = t[i] ;
        if ( i - n1 >= 1 ) Q.push_front( (node){i - n1, t[i - n1]} ) ; 
        while(m) {
            if ( Q.empty() ) return zhf ;
            tmp = Q.back() ;
            if ( tmp.id + n2 <= i && c1 > c2 ) {
                k = min(m, tmp.val) ;
                m -= k ; tmp.val -= k ;
                rec += k*c2 ;
                Q.pop_back() ;
                if ( tmp.val ) Q.push_back(tmp) ;
            } else {
                tmp = Q.front() ;
                k = min(m, tmp.val) ;
                m -= k ; tmp.val -= k ;
                rec += k*c1 ;
                Q.pop_front() ;
                if ( tmp.val ) Q.push_front(tmp) ;
            }
        }
    }
    return rec ;
}
int main() {
    int i, k, l = 1, r = 0, mid1, mid2 ;
    Read(n) ; Read(n1) ; Read(n2) ; Read(c1) ; Read(c2) ; Read(tc) ;
    if ( n1 > n2 ) swap(n1, n2), swap(c1, c2) ;
    for ( i = 1 ; i <= n ; i ++ ) {
        Read(t[i]) ;
        r += t[i] ;
    }
    while ( r - l > 20 ) {
        mid1 = (l*2 + r)/3 ;
        mid2 = (l + r*2)/3 ;
        if ( calc(mid1) >= calc(mid2) ) l = mid1 ;
        else r = mid2 ;
    }
    k = zhf ;
    for ( i = l ; i <= r ; i ++ )
        k = min(k, calc(i)) ;    
    printf ( "%d\n", k ) ;    
    return 0 ;
}
阅读更多
版权声明:hhhhh https://blog.csdn.net/WT_cnyali/article/details/78067938
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭