《神经网络与深度学习》习题答案 文章目录前言第 11 章11-1(1)(2)(3)(4)前言自己写的或找的习题答案,其中自己写的答案都会同步更新到邱锡鹏老师在 github 上关于这本书的 solutions 项目中(具体题解都在 issues 中)。第 11 章11-1(1)已知 p(x1,x2,x3)=p(x3)⋅p(x2∣x3)⋅p(x1∣x2)已知\space p(x_1,x_2,x_3) = p(x_3)·p(x_2|x_3)·p(x_1|x_2)已知 p(x1,x2,x3)=p(x3
SemEval 介绍 文章目录Why SemEval?Introduce of SemEval补充ReferencesSemEval (Semantic Evaluation) 是评估机器语义分析的一个系列,或者说是一系列研讨会。该研讨会每年都会举办一次,目前依旧存在。其实 SemEval 研讨会的内容其实本身不复杂,只是解释起来容易变得抽象(也可能是我英语水平不行,一开始看一些介绍没理解清楚)。而此标题下要介绍的数据集就是该研讨会提供的,在介绍数据集之前,我先再更具体解释一下 SemEval。Why SemEval?在
ABSA 各子任务介绍 文章目录元任务ATEACDOTEABSCAspect TermAEOEALSC(ATSC)AOEAESCPairTriplet(ASTE)Aspect CategoryCategory-Oriented Sentiment ClassificationCategory-Sentiment Hierarchical ClassificationAspect-Category-Sentiment Triple ExtractionAll IncludeAspect-Category-Opinion-Sentim
ABSA 中 target、aspect、category 等名词概念梳理 我认为 NLP 的 ABSA 一直以来对一些概念的定义是不统一的,容易混淆的词有 target、entity、aspect、aspect term、category,所以针对这些词在这里区分一下。先给出一个例句,之后解释每个名词的时候都用该例句来举例。例句:华为手机不错,拍照很惊艳,电池续航能力也不错,就是外观有点儿丑。Entity:一个客观存在的东西。例如例句中的“华为手机”。(当然,也可以是比较抽象的概念,比如电视行业,虽然没有一个这样的客观存在的实体,但其实我们可以将其抽象成一个 Entit
补码与余码的关系 Observation我们知道补码是为了二进制数的符号位直接参与加减运算而设计出来的,其原理可以用下面这个例子来展示:∵−1mod4 == 3mod4∴(3−1)mod4 = 2(3+3)mod4 = 2\quad∵-1 mod 4\ ==\ 3 mod4 \\∴(3-1) mod 4\ =\ 2 \\\quad(3+3) mod 4\ =\ 2∵−1mod4 == 3mod4∴(3−1)mod4 =&n
A Multi-task Ensemble Framework for Emotion, Sentiment and Intensity Prediction 读 《A Multi-task Ensemble Framework for Emotion, Sentiment and Intensity Prediction》 论文笔记。
Multi-Instance Multi-Label Learning Networks for Aspect-Category Sentiment Analysis 读 《Multi-Instance Multi-Label Learning Networks for Aspect-Category Sentiment Analysis》 这篇论文做的笔记。
L-C-R Separated Neural Network for Aspect-based Sentiment Analysis with Rotatory Attention 读《Left-Center-Right Separated Neural Network for Aspect-based Sentiment Analysis with Rotatory Attention》论文有感和笔记博客标题有所简略(否则超出标题长度)
Gated Neural Networks for Targeted Sentiment Analysis 读《Gated Neural Networks for Targeted Sentiment Analysis》论文后感与笔记。
Transformation Networks for Target-Oriented Sentiment Classification 《Transformation Networks for Target-Oriented Sentiment Classification》这篇论文的读后感和笔记
Recurrent Attention Network on Memory for Aspect Sentiment Analysis 读《Recurrent Attention Network on Memory for Aspect Sentiment Analysis》这篇论文的理解与笔记