评估报错:can‘t pickle _thread.lock objects

本文讨论了在使用Keras模型进行评估时遇到的问题,特别是当use_multiprocessing参数设置为True时,由于CPU处理数据的速度无法跟上GPU的需求而导致的错误。文章提出了将workers参数设置为1作为解决方案。

评估代码:model.evaluate(test_data,steps=39997/128,workers=2, use_multiprocessing=True, verbose=0)

报错:

原因 :use_multiprocessing=True,多线程生成数据,当CPU读取数据跟不上GPU处理数据速度造成上诉原因。

改进:model.evaluate(test_data,steps=39997/128,workers=1, verbose=0)

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值