评估代码:model.evaluate(test_data,steps=39997/128,workers=2, use_multiprocessing=True, verbose=0)
报错:
原因 :use_multiprocessing=True,多线程生成数据,当CPU读取数据跟不上GPU处理数据速度造成上诉原因。
改进:model.evaluate(test_data,steps=39997/128,workers=1, verbose=0)
本文讨论了在使用Keras模型进行评估时遇到的问题,特别是当use_multiprocessing参数设置为True时,由于CPU处理数据的速度无法跟上GPU的需求而导致的错误。文章提出了将workers参数设置为1作为解决方案。
评估代码:model.evaluate(test_data,steps=39997/128,workers=2, use_multiprocessing=True, verbose=0)
报错:
原因 :use_multiprocessing=True,多线程生成数据,当CPU读取数据跟不上GPU处理数据速度造成上诉原因。
改进:model.evaluate(test_data,steps=39997/128,workers=1, verbose=0)

被折叠的 条评论
为什么被折叠?