bzoj3223[Tyvj 1729] 文艺平衡树(splay模板题:区间翻转)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wu_tongtong/article/details/78632656

Description

您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:翻转一个区间,例如原有序序列是5 4 3 2 1,翻转区间是[2,4]的话,结果是5 2 3 4 1 

Input

第一行为n,m n表示初始序列有n个数,这个序列依次是(1,2……n-1,n)  m表示翻转操作次数
接下来m行每行两个数[l,r] 数据保证 1<=l<=r<=n 

Output

 

输出一行n个数字,表示原始序列经过m次变换后的结果 

Sample Input

5 3

1 3

1 3

1 4

Sample Output

4 3 2 1 5

HINT



N,M<=100000

Source

[Submit][Status][Discuss]


分析:
splay的经典操作,没有冗杂的insert和delet
我们只需要记录一个翻转标记

首先我们需要按照下标的大小建立一棵splay

假设我们需要翻转(x,y)区间,我们只需要把x-1换到根上,y+1换到根的右儿子上
这样(x,y)内的所有数就集中在了root—>rightchiold—>leftchild
我们只要打上一个翻转标记即可

翻转标记的效果就是翻转左右儿子

大体思路已经口hu完了
但是我们还有一些细节需要处理:

First.

我们翻转的区间可能是(x,n)或者(1,x),这样我们就找不到区间的前驱或后继
所以我们需要在两头分别添加一个无用节点,v分别是-INF和INF
所以就有了这几句:

a[0]=-INF; 
a[n+1]=INF;
for (int i=1;i<=n;i++) a[i]=i;
root=build(0,n+1,0);

我们在构建初始splay的时候,实际上把a[0]代表的值放在了一号结点的位置上
所以如果要查询区间(x,y)

ta的前驱就是结点x,后继是结点y+2

Second.

我们在构建初始的平衡树时,一个一个insert肯定是很愚蠢的
但是如果我们直接构建成一条链,在之后的处理中会浪费很多时间
受到线段树的启发,我们这样建树:

int build(int l,int r,int fa)
{
    if (l>r) return 0;
    int mid=(l+r)>>1;
    int now=++top;
    ch[now][0]=build(l,mid-1,now);
    ch[now][1]=build(mid+1,r,now);
    pre[now]=fa;
    rev[now]=0;
    v[now]=a[mid]; 
    update(now);
    return now;
}

tip

在splay之前,我们需要先下传标记
于是我直接写了一个down函数:

void down(int bh)
{
    if (pre[bh]) down(pre[bh]);
    push(bh);
}

时刻push:splay,find,print

线段树作为一种基础数据结构,再很多高级数据结构中都会涉及到ta的思想

//这里写代码片
#include<cstdio>
#include<iostream>
#include<iostream>

using namespace std;

const int INF=1e9+7;
const int N=100010;
int v[N],ch[N][2],size[N],pre[N],a[N];
int n,root,top=0,m;
bool rev[N];

int get(int bh)
{
    return ch[pre[bh]][0]==bh? 0:1;
}

void update(int bh)
{
    if (!bh) return;
    size[bh]=1;
    if (ch[bh][0]) size[bh]+=size[ch[bh][0]];
    if (ch[bh][1]) size[bh]+=size[ch[bh][1]];
}

void push(int bh)
{
    if (!bh) return;
    if (rev[bh])
    {
        if (ch[bh][0]) rev[ch[bh][0]]^=1;
        if (ch[bh][1]) rev[ch[bh][1]]^=1;
        swap(ch[bh][0],ch[bh][1]);
        rev[bh]^=1;
    }
}

void rotate(int bh)
{
    int fa=pre[bh];
    int grand=pre[fa];
    int wh=get(bh);
    ch[fa][wh]=ch[bh][wh^1];
    pre[ch[fa][wh]]=fa;
    ch[bh][wh^1]=fa;
    pre[fa]=bh;
    pre[bh]=grand;
    if (grand) ch[grand][ch[grand][0]==fa? 0:1]=bh;
    update(fa);
    update(bh);
}

void down(int bh)
{
    if (pre[bh]) down(pre[bh]);
    push(bh);
}

int splay(int bh,int mb)
{
    down(bh);                                                        //
    for (int fa;(fa=pre[bh])!=mb;rotate(bh))
        if (pre[fa]!=mb)
            rotate(get(bh)==get(fa)? fa:bh);
    if (mb==0) root=bh;
}

int find(int x)
{
    int now=root;
    while (1)
    {
        push(now);                                                    //
        if (size[ch[now][0]]>=x) now=ch[now][0];
        else
        {
            int tmp=(ch[now][0]? size[ch[now][0]]:0);
            tmp++;
            if (tmp>=x) return now;
            x-=tmp;
            now=ch[now][1];
        }
    }
}

void print(int now)
{
    push(now);                                                       //
    if (ch[now][0]) print(ch[now][0]);
    if (v[now]!=INF&&v[now]!=-INF) printf("%d ",v[now]);
    if (ch[now][1]) print(ch[now][1]);
}

int build(int l,int r,int fa)
{
    if (l>r) return 0;
    int mid=(l+r)>>1;
    int now=++top;
    ch[now][0]=build(l,mid-1,now);
    ch[now][1]=build(mid+1,r,now);
    pre[now]=fa;
    rev[now]=0;
    v[now]=a[mid]; 
    update(now);
    return now;
}

int main()
{
    scanf("%d%d",&n,&m);
    a[0]=-INF; a[n+1]=INF;
    for (int i=1;i<=n;i++) a[i]=i;
    root=build(0,n+1,0);

    for (int i=1;i<=m;i++)
    {
        int x,y;
        scanf("%d%d",&x,&y);
        int xx=find(x);
        int yy=find(y+2);
        splay(xx,0);
        splay(yy,xx);
        rev[ch[ch[root][1]][0]]^=1;
    }

    print(root);
    return 0;
}
展开阅读全文

没有更多推荐了,返回首页