给你一个整数数组 coins
,表示不同面额的硬币;以及一个整数 amount
,表示总金额。
计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1
。
你可以认为每种硬币的数量是无限的。
示例 1:
输入:coins =[1, 2, 5]
, amount =11
输出:3
解释:11 = 5 + 5 + 1
示例 2:
输入:coins =[2]
, amount =3
输出:-1
示例 3:
输入:coins = [1], amount = 0 输出:0
这道题也是动态规划的一个简单应用,不过需要注意的是,因为amout可能从0开始,并且我们求取的是最小值所以需要提前给数组附个初值,这个值要比amount的值大,你可以设置成amount+1,但是最好不要设置成
int max = Integer.MAX_VALUE;
因为他可能导致溢出
class Solution {
public int coinChange(int[] coins, int amount) {
// 初始化变量 max 为 amount + 1,这是一个大于可能的最大金额的值
int max = amount + 1;
// 创建一个长度为 max 的 dp 数组,并将所有元素填充为 max
int[] dp = new int[max];
Arrays.fill(dp, max);
// 初始化 dp[0] 为 0,表示金额为 0 时需要的硬币数为 0
dp[0] = 0;
// 遍历从 0 到 amount 的所有金额
for (int i = 0; i <= amount; i++) {
// 遍历所有硬币
for (int j = 0; j < coins.length; j++) {
// 如果当前金额 i 大于等于硬币面值 coins[j]
if (i >= coins[j]) {
// 更新 dp[i],选择使用当前硬币 coins[j] 或者不使用,取较小值
dp[i] = Math.min(dp[i], dp[i - coins[j]] + 1);
}
}
}
// 如果 dp[amount] 大于 amount,则表示无法凑出金额 amount,返回 -1
// 否则返回 dp[amount],即凑出金额 amount 的最小硬币数
return dp[amount] > amount ? -1 : dp[amount];
}
}