排序:
默认
按更新时间
按访问量

机器学习-数据归一化方法(Normalization Method)1.

https://blog.csdn.net/program_developer/article/details/78637711 出现背景: 从左至右来看,第一个模型是一个线性模型,拟合度很低,也称作欠拟合(Underfitting),不能很好地适应我们的训练集;第三个模型是一个高次方的模型...

2018-11-12 22:19:34

阅读数:17

评论数:0

人体各关节活动范围

肩关节上臂下垂为中立位。关节活动度 a 前屈:70°-90° b 后伸:40°-45° c 前屈上举:150°-170° d 上举:160°-180° e 外展:80°-90° f 内收:20°-40° g 内旋:70°-90° h 外旋:40°-50° 上肢.jpg (24.85 KB) 肘关节...

2018-11-12 16:13:49

阅读数:10

评论数:0

SAGAN——Self-Attention Generative Adversarial Networks

原论文下载地址:Self-Attention Generative Adversarial Networks 该文章作者为:Han Zhang GitHub代码实现:pytorch实现 摘要部分: 本文提出了Self-Attention Generative Adversarial Net...

2018-11-07 19:01:09

阅读数:55

评论数:0

A-Softmax的总结及与L-Softmax的对比——SphereFace

目录 1. A-Softmax的推导2. A-Softmax Loss的性质3. A-Softmax的几何意义4. 源码解读A-Softmax的效果与L-Softmax的区别 转自:https://www.cnblogs.com/heguanyou/p/7503025.html A-Soft...

2018-11-07 10:05:36

阅读数:37

评论数:0

tensorflow 图像预处理_小结

图像翻转 tf.image.flip_up_down:上下翻转 tf.image.flip_left_right:左右翻转 tf.image.transpose_image:对角线翻转 除此之外,TensorFlow还提供了随机翻转的函数,保证了样本的样本的随机性: tf.image.ra...

2018-10-31 11:04:21

阅读数:19

评论数:0

向量的内积

转自:http://dec3.jlu.edu.cn/webcourse/t000022/teach/chapter5/5_1.htm 一.数学概念 1. 内积:设有n维向量           令        , 则称[x,y]为向量x与y的内积。 2. 范数:称 为向量x的范...

2018-10-24 15:58:54

阅读数:30

评论数:0

PCA的数学原理

转自:https://www.cnblogs.com/mikewolf2002/p/3429711.html PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用...

2018-10-23 17:09:16

阅读数:34

评论数:0

计算物体数量的程序(python_pang,临时保存)

import os import glob cls_path = '/home/wgb/Desktop/SSD/SSD1011_pang/pang_dataset/cls/*.txt' file_paths = glob.glob(cls_path) dice_num = 0 screw_n...

2018-10-19 10:43:06

阅读数:22

评论数:0

临时保存(Python)求SSD test accuracy

import numpy as np import os import matplotlib.pyplot as plt data_path = '/home/wgb/Downloads/accuracy' save_path = '/home/wgb/Downloads/accuracy.pn...

2018-10-19 10:16:52

阅读数:16

评论数:0

matplotlib命令与格式:标题(title),标注(annotate),文字说明(text)

1.title设置图像标题 (1)title常用参数 fontsize设置字体大小,默认12,可选参数 ['xx-small', 'x-small', 'small', 'medium', 'large','x-large', 'xx-large'] fontweight设置字体粗细,可选参数 ...

2018-10-19 09:38:19

阅读数:51

评论数:0

python list元素的unique方法

1.例子如下 import numpy as np wg = [] a = [1] b= [2] c = [2,4,5] d = [3,2,5,6] e = [1,4,7,9,4] f = [1] wg.append(a) wg.append(b) wg.append(c) wg.appe...

2018-10-18 14:48:47

阅读数:59

评论数:0

求和运算法则

求和运算定义:对于T个观测值,x1, x2, …, xT,求和可以简化地表示为 求和算子的运算规则如下: 1、变量观测值倍数的和等于变量观测值和的倍数 2、T个常数求和等于该常数的T倍。     其中k是常数。 利用求和算子定义,样本平均数可表示为 3、变量观测值对于其平均...

2018-10-17 18:04:58

阅读数:36

评论数:0

python3与Python2.7 转换中问题(1)

1. 字符串与字符之间的转换(2.7---->3.6) #!/usr/bin/env python2.7 # -*- coding: utf-8 -*- import numpy as np import os a =b'IMG_20180724_210759.jpg...

2018-10-16 07:42:50

阅读数:18

评论数:0

tf.while_loop 的用法

def get_non_zero_rawdata(new_features): raw_pos_tan = new_features['raw_pos_tan'] raw_sita = tf.atan(raw_pos_tan) raw_sita_Euler = raw_...

2018-10-09 10:50:31

阅读数:94

评论数:0

tf.metrics.accuracy

问题: 使用tf.metrics.accuracy评估模型时,抛出异常Attempting to use uninitialized value accuracy/count 解决方案: 第一点: 初始化变量: 由于metrics.accuracy创建了两个局部变量total和count,...

2018-10-04 07:11:13

阅读数:39

评论数:0

note

1. `sudo dpkg -i cuda-repo-ubuntu1604-9-0-local-rc_9.0.103-1_amd64.deb` sudo apt-key add /var/cuda-repo-9-0-local/7fa2af80.pub `sudo apt-get updat...

2018-09-08 13:47:05

阅读数:73

评论数:0

windows 下安装anaconda,并配opencv环境

1. 下载anaconda,(pythonban'版本为3.6.5),并安装。 注:安装时选择all usrs (base) C:\Users\Administrator>python Python 3.6.5 |Anaconda, Inc.| (default, Ma...

2018-09-03 12:01:23

阅读数:135

评论数:0

ubuntu中查看各种设备和资源的命令汇总

一、系统信息     1.查看内核信息:                                           $uname -a     2.查看操作系统版本:                                      $head -n 1 /etc/issue ...

2018-08-30 17:55:11

阅读数:56

评论数:0

tf.metrics.accuracy

1. cls_accuracy = tf.metrics.accuracy(flaten_cls_targets, tf.argmax(cls_pred, axis=-1)) tf.metrics.accuracy(     labels,     predictions,     wei...

2018-08-22 21:16:23

阅读数:278

评论数:0

计算Python Numpy向量之间的欧氏距离

计算Python Numpy向量之间的欧氏距离,已知vec1和vec2是两个Numpy向量,欧氏距离计算如下: import numpy   dist = numpy.sqrt(numpy.sum(numpy.square(vec1 - vec2))) 或者直接: di...

2018-08-15 10:02:58

阅读数:89

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭