#define HEAP_SWAP(a,b) \
do \
{\
int t = a;\
a = b;\
b = t;\
} while (0);
// array是待调整的堆数组,i是待调整的数组元素的位置,nlength是数组的长度
void HeapAdjust(int array[],int i,int nLength)//本函数功能是:根据数组array构建大根堆
{
int nChild;int nTemp;
for (nTemp = array[i]; 2 * i + 1 < nLength; i = nChild)
{
// 子结点的位置=2*(父结点位置)+ 1
nChild=2*i+1;
// 得到子结点中较大的结点
if (nChild < nLength - 1 && array[nChild + 1] > array[nChild])
++nChild;
// 如果较大的子结点大于父结点那么把较大的子结点往上移动,替换它的父结点
if (nTemp < array[nChild])
{
array[i]=array[nChild];
}
else// 否则退出循环
{
break;
}// 最后把需要调整的元素值放到合适的位置
array[nChild]= nTemp;
}
}
void HeapSort(int array[],int length)
{
// 注 从最大一个拥有孩子的父加点开始 向前依次调整
// 使得每一个子树的根结点 都是 最小值 或 最大值
// 子树变为叶子结点 继续向前调整 直到 整个二叉树根结点为止
// 调整树必定 是一棵完全二叉树
// 最大一个拥有孩子的父加点开始 向前依次调整,调整完之后第一个元素是序列的最大的元素
for (int i = length / 2 - 1; i >= 0; --i)
{
HeapAdjust(array,i,length);
}
// 从最后一个元素开始对序列进行调整,不断的缩小调整的范围直到第一个元素
for (int i = length - 1; i > 0; --i)
{ // 把第一个元素和当前的最后一个元素交换,
// 保证当前的最后一个位置的元素都是在现在的这个序列之中最大的
HEAP_SWAP(array[0],array[i]);
// 不断缩小调整heap的范围,每一次调整完毕保证第一个元素是当前序列的最大值
HeapAdjust(array,0,i);
}
}
蜘蛛侠:http://topic.csdn.net/u/20091111/21/2cf98368-c6d5-4128-99e5-2f2b1d292dfd.html
点击打开链接:http://topic.csdn.net/u/20091111/21/2cf98368-c6d5-4128-99e5-2f2b1d292dfd.html