最短路的方法总结

1.Dijkstra算法

#include<stdio.h>
#include<iostream>
#define Max 999999
int map[1005][1005];
int dis[1005];
void dijkstra(int n)
{
    int visit[1001]={0};
    int min,i,j,k;
    visit[1]=1;
    for(i=1;i<n;++i)
    {
        min=Max;
        k=1;
        for(j=1;j<=n;++j)
        {
            if(!visit[j]&&min>dis[j])
            {
             min=dis[j];
                k=j;
            }
        }
        visit[k]=1;
        for(j=1;j<=n;++j)
        {
            if(!visit[j]&&dis[j]>dis[k]+map[k][j])
                dis[j]=dis[k]+map[k][j];
        }
    }
     printf("%d\n",dis[n]);
}
int main()
{
    int t,n,i,j,from,to,cost;
    while(scanf("%d%d",&t,&n)!=EOF)
    {
        for(i=1;i<=n;++i)
        {
            map[i][i]=0;
            for(j=1;j<i;++j)
               map[i][j]=map[j][i]=Max;
       }
               for(i=1;i<=t;++i)
        {
             scanf("%d%d%d",&from,&to,&cost);
            if(cost<map[from][to])
                map[from][to]=map[to][from]=cost;
        }
        for(i=1;i<=n;++i)
            dis[i]=map[1][i];
        dijkstra(n);
    }
    return 0;
}

2.Kruskal算法

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n,m;
int f[10005],sum,cou;


struct edge
{
    int u;
    int v;
    int w;
};


edge e[10005];


int cmp(edge a,edge b)
{
    return a.w<b.w;
}


int getf(int v)
{
    if(f[v]==v)
        return v;
    else
    {
        f[v]=getf(f[v]);
        return f[v];
    }
}


int merg(int v,int u)
{
    int t1,t2;
    t1=getf(v);
    t2=getf(u);
    if(t1!=t2)
    {
        f[t2]=t1;
        return 1;
    }
    return 0;
}


int main()
{
    int i;
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        sum=0;
        cou=0;
        memset(e,0,sizeof(e));
        memset(f,0,sizeof(f));
        for(i=1;i<=m;i++)
        {
            scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w);
        }
        sort(e+1,e+m+1,cmp);
        for(i=1;i<=n;i++)
        {
            f[i]=i;
        }
        for(i=1;i<=m;i++)
        {
            if(merg(e[i].v,e[i].u))
            {
                cou++;
                sum=sum+e[i].w;
            }
            if(cou==n-1)
                break;
        }
        cout<<sum<<endl;
    }
    return 0;
}

3.Prim算法

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;


int main()
{
    int n,m;
    int i,j,k;
    int t1,t2,t3;
    int minx;
    int e[105][105],dis[105],book[105];
    int inf=99999999;
    int cou,sum;
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        memset(e,0,sizeof(e));
        memset(dis,0,sizeof(dis));
        memset(book,0,sizeof(book));
        sum=0;
        cou=0;
        for(i=1;i<=n;i++)
        {
            for(j=1;j<=n;j++)
            {
                if(i==j)
                    e[i][j]=0;
                else
                    e[i][j]=inf;
            }
        }
        for(i=1;i<=m;i++)
        {
            scanf("%d%d%d",&t1,&t2,&t3);
            e[t1][t2]=t3;
            e[t2][t1]=t3;
        }
        for(i=1;i<=n;i++)
        {
            dis[i]=e[1][i];
        }
        book[1]=1;
        cou++;
        while(cou<n)
        {
            minx=inf;
            for(i=1;i<=n;i++)
            {
                if(book[i]==0&&dis[i]<minx)
                {
                    minx=dis[i];
                    j=i;
                }
            }
            book[j]=1;
            cou++;
            sum=sum+dis[j];
            for(k=1;k<=n;k++)
            {
                if(book[k]==0&&dis[k]>e[j][k])
                    dis[k]=e[j][k];
            }
        }
        cout<<sum<<endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值