打印从n个数中选取m个数的组合数

   打印从n个数种选取m个数的组合数

方法一:利用递归思想。

//从后往前选取,选定位置i后,再在前i-1个里面选取m-1个。
//如 1 2 3 4 5 中选取 3 个
//1、选取5后,再在前4个里面选取2个,而前4个里面选取2个又是一个子问题,递归即可。
//2、如果不包含5,直接选定4,那么再在前3个里面选取2个,而前三个里面选取2个又是一个子问题,递归即可。
//3、如果也不包含4,直接选取3,那么再在前2个里面选取2个,刚好只有两个。
//纵向看,1、2、3刚好是一个for循环,初值为5,终值为m
//横向看,该问题为一个前i-1个中选m-1的递归。
void Combination(int arr[], int nLen, int m, int out[], int outLen)
{
	if(m == 0)
	{
		for (int j = 0; j < outLen; j++)
			cout << out[j] << "\t";
		cout << endl;

		return;
	}

	for (int i = nLen; i >= m; --i)	//从后往前依次选定一个
	{
		out[m-1] = arr[i-1]; //选定一个后
		Combination(arr,i-1,m-1,out,outLen); // 从前i-1个里面选取m-1个进行递归
	}
}

void PrintCombination(int arr[], int nLen, int m)
{
	if(m > nLen)
		return;

	int* out = new int[m];
	Combination(arr,nLen,m,out,m);
	delete [] out;
}

 

方法二:二进制组合算法:
  思路是开一个数组,其下标表示1到m个数,数组元素的值为1表示其下标
  代表的数被选中,为0则没选中。   
  首先初始化,将数组前n个元素置1,表示第一个组合为前n个数。   
  然后从左到右扫描数组元素值的“10”组合,找到第一个“10”组合后将其变为“01”组合,同时将其左边的所有“1”全部移动到数组的最左端(只有第一位变为0才需要移动,否则其左边的1本来就在最左端,无需移动)。   
  当第一个“1”移动到数组的m-n的位置,即n个“1”全部移动到最右端时,就得到了最后一个组合。   
  例如求5中选3的组合:   
  1   1   1   0   0   //1,2,3   
  1   1   0   1   0   //1,2,4   
  1   0   1   1   0   //1,3,4   
  0   1   1   1   0   //2,3,4   
  1   1   0   0   1   //1,2,5   
  1   0   1   0   1   //1,3,5   
  0   1   1   0   1   //2,3,5   
  1   0   0   1   1   //1,4,5   
  0   1   0   1   1   //2,4,5   
  0   0   1   1   1   //3,4,5

 

代码如下:

void Combine(int arr[], int n, int m)
{
	if(m > n)
		return;

	int* pTable = new int[n];		//定义标记buf并将其前m个置1
	memset(pTable,0,sizeof(int)*n);
	for(int i = 0; i < m; ++i)
		pTable[i] = 1;

	bool bFind = false;
	do 
	{
		for (int i = 0; i < n; i++)	//打印当前组合
		{
			if(pTable[i])
				cout << arr[i] << "\t";
		}
		cout << endl;

		bFind = false;
		for(int i = 0; i < n-1; i++)
		{
			if(pTable[i]==1 && pTable[i+1]==0)
			{
				swap(pTable[i],pTable[i+1]);	//调换10为01
				bFind = true;

				if(pTable[0] == 0)	//如果第一位为0,则将第i位置之前的1移到最左边,如为1则第i位置之前的1就在最左边,无需移动
				{
					for (int k=0, j=0; k < i; k++)	//O(n)复杂度使1在前0在后
					{
						if(pTable[k])
						{
							swap(pTable[k],pTable[j]);
							j++;
						}
					}
				}

				break;
			}
		}
	} while (bFind);

	delete [] pTable;
}

测试代码如下

int main()
{
	int arr[] = {1,2,3,4,5,6};
	Combine(arr,sizeof(arr)/sizeof(int),3);
	//PrintCombination(arr,sizeof(arr)/sizeof(int),3);
}

 

   方法一结果           方法二结果
       
 

没有更多推荐了,返回首页