120. Triangle

本文介绍了一种求解三角形最小路径和问题的有效算法,采用动态规划思想,利用滚动数组减少空间复杂度至O(n),并通过具体示例进行解释。

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

分析:从最下面一层开始往上计算,设dp[i][j]是以第i层第j个元素为起点的最小路径和,动态规划方程如下

dp[i][j] = value[i][j] + max{dp[i-1][j], dp[i-1][j+1]}

因为每一层之和它下一层的值有关,因此只需要一个一维数组保存下层的值,代码如下:

class Solution {
public:
    int minimumTotal(vector<vector<int> > &triangle) {
        // IMPORTANT: Please reset any member data you declared, as
        // the same Solution instance will be reused for each test case.
        const int rows = triangle.size();
        int dp[rows];
        for(int i = 0; i < rows; i++)
            dp[i] = triangle[rows-1][i];
        for(int i = rows-2; i >= 0; i--)
            for(int j = 0; j <= i; j++)
                dp[j] = triangle[i][j] + min(dp[j], dp[j+1]);
        return dp[0];
    }
};

9.14更新

--------------------

此题很有意思,用滚动数组就可以。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值