matlab中常用函数系列二

1、fgetl

tline=fgetl(fid) 从文件中读取行,删除文件换行符(换行符和回车符)

返回由文件标识符fid指示的文件的下一行。如果fgetl遇到文件结束指示符,则返回-1。对于fid的完整描述请参考fopen函数。fgetl函数常用于含有文件换行符的文件。 

matlab中fgetl、fgets、fread函数

2、return语句

return 语句终止当前的命令序列,把控制返回到调用函数或键盘。


3、字符串的比较:

函数strcmp(str1,str2):比较两个字符串是否相同,若相等则返回1值,若不相等则返回0值。

函数strncmp(str1,str2,n): 比较两个字符串的前n个字符是否相同,若相等则返回1值,若不相等则返回0值
 

4、字符串的查找与替换

函数findstr(‘str1’,’str2’):在字符串str1中查找子串str2,返回str2在str1中的起始位置。

函数strrep(‘str1’,’str2’,’str3’):字符串替换
 

5、strsplit和strtok

MATLAB如何分割字符串

6、左除和右除

\(左除): A\B=inv(A)*B, 其中inv(A)表示A逆阵
 

/(右除): A/B=A*inv(B)。
 

7、setdiff

aa=[1 2 2 3 4 5];
bb=[3 6];
cc=setdiff(aa,bb)

运行结果:

cc =

     1     2     4     5

C = setdiff(A,B) 返回 A 中存在但 B 中不存在的数据,不包含重复项。C 是有序的。

参考:

setdiff 设置两个数组的差集

8、intersect

MATLAB求数组交集和并集的方法

两个向量A,B,C=intersect(A,B)将A与B分量的交集结果存入C.

intersect可以有三个返回值,如图,后两个分别是交集元素在原有集合中的下标:

9、exist() :存在返回值

exist:主要有两种形式,一个参数和两个参数的,作用都是用于确定某值是否存在;
1. b = exist( a)
      若 a 存在,则 b = 1; 否则 b = 0;
2. b = exist( 'name', 'kind')
      kind 表示 name 的类型,可以取的值为:builtin(内建类型),class(类),dir(文件夹),file(文件或文件夹),var(变量)。

A = exist('name','kind')

返回值的含义如下:

0 不存在则返回值
1 name 可以是变量名,如果存在,返回值
2 函数名、m 文件名,存在则返回值
3 mex 文件、dll 文件,存在则返回值
4 内嵌的函数,存在则返回值
5 p码文件 , 存在则返回值
6 目录,存在则返回值
7 路径,存在则返回值
8 Java class,存在则返回值

示例代码:

前文已经定义变量 ”GPS_DAT“

备注:若出现:~exist(……); 就是将exist(……)的结果取反!

参考:matlab中exist函数用法

10、取整函数:floor round ceil fix

(1) fix朝零方向取整,如fix(-1.3)=-1; fix(1.3)=1;

(2) floor,顾名思义,就是地板,所以是取比它小的整数,即朝负无穷方向取整;

如floor(-1.3)=-2; floor(1.3)=1;floor(-1.8)=-2,floor(1.8)=1

(3) ceil,与floor相反,它的意思是天花板,也就是取比它大的最小整数,即朝正无穷方向取整;

如ceil(-1.3)=-1; ceil(1.3)=2;ceil(-1.8)=-1,ceil(1.8)=2

(4) round四舍五入到最近的整数;

如round(-1.3)=-1;round(-1.52)=-2;round(1.3)=1;round(1.52)=2。

11、cumsum()

cumsum函数通常用于计算一个数组各行、列的累加值。

格式一:B = cumsum(A)

这种用法返回数组不同维数的累加和

如果A是一个向量, cumsum(A) 返回一个向量,该向量中第m行的元素是A中第1行到第m行的所有元素累加和;

如果A是一个矩阵, cumsum(A) 返回一个和A同行同列的矩阵,矩阵中第m行第n列元素是A中第1行到第m行的所有第n列元素的累加和;

如果A是一个多维数组, cumsum(A)只对A中第一个非奇异维进行计算。

格式二:B = cumsum(A,dim)

这种调用格式返回A中由标量dim所指定的维数的累加和。

例如:cumsum(A,1)返回的是沿着第一维(各列)的累加和,cumsum(A,2)返回的是沿着第二维(各行)的累加和。

默认是沿着各列进行累加!cumsum(A)=cumsum(A,1)

参考示例:

 a=[1 2 3;1 2 3;1 2 3 ;1 2 3];

c=cumsum(a,1)

c =

     1     2     3
     2     4     6
     3     6     9
     4     8    12

 b=cumsum(a)

b =

     1     2     3
     2     4     6
     3     6     9
     4     8    12

c=cumsum(a,2)

c =

     1     3     6
     1     3     6
     1     3     6
     1     3     6

12、 diff()

diff函数式用于求导数和差分的.无论是求导数还是差分,其原理是一样的。

示例,具体用法:

(1)前后相邻元素之差

(2)上下相邻行之差

 

(3)diff(A,1,1) 与 上面类似;即按照行差分

(4)diff(A,1,2),按照列差分

(5)diff(A,2,2)第2个参数为2表示为二阶差分变换.即在diff(A,1,2)的基础上再进行一次列差分变换.

13、numel()

数组中含有的元素个数某一条件下,元素的个数

语法格式:

n = numel(A);

n= numel(A,条件);

 

 

 

 

 

 

 

 

14、unique() 去掉矩阵中重复的元素

用法1:b=unique(a)

 释义:取集合a的不重复元素构成的向量

用法2:[c,i,j]=unique(A,'rows')

 释义:

%c 返回不同的行

%i 体现c中元素在原向量(矩阵a)中的行数;
 

 释义:%j 体现原向量(矩阵a)在c中的行位置

用法3:[b,i,j]=unique(a)

 释义:%返回矩阵A中的不同元素

释义: i体现c中元素在原向量(矩阵a)中的位置;

释义: j体现原向量(矩阵a)在c中的位置

参考链接:matlab中unique函数(参考别人的写的,加上了自己的理解)

15、

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

已标记关键词 清除标记
相关推荐
各种数学算法的MATLAB实现 第4章: 插值 函数名 功能 Language 求已知数据点的拉格朗日插值多项式 Atken 求已知数据点的艾特肯插值多项式 Newton 求已知数据点的均差形式的牛顿插值多项式 Newtonforward 求已知数据点的前向牛顿差分插值多项式 Newtonback 求已知数据点的后向牛顿差分插值多项式 Gauss 求已知数据点的高斯插值多项式 Hermite 求已知数据点的埃尔米特插值多项式 SubHermite 求已知数据点的分段三次埃尔米特插值多项式及其插值点处的值 SecSample 求已知数据点的次样条插值多项式及其插值点处的值 ThrSample1 求已知数据点的第一类三次样条插值多项式及其插值点处的值 ThrSample2 求已知数据点的第类三次样条插值多项式及其插值点处的值 ThrSample3 求已知数据点的第三类三次样条插值多项式及其插值点处的值 BSample 求已知数据点的第一类B样条的插值 DCS 用倒差商算法求已知数据点的有理分式形式的插值分式 Neville 用Neville算法求已知数据点的有理分式形式的插值分式 FCZ 用倒差商算法求已知数据点的有理分式形式的插值分式 DL 用双线性插值求已知点的插值 DTL 用元三点拉格朗日插值求已知点的插值 DH 用分片双三次埃尔米特插值求插值点的z坐标 第5章: 函数逼近 Chebyshev 用切比雪夫多项式逼近已知函数 Legendre 用勒让德多项式逼近已知函数 Pade 用帕德形式的有理分式逼近已知函数 lmz 用列梅兹算法确定函数的最佳一致逼近多项式 ZJPF 求已知函数的最佳平方逼近多项式 FZZ 用傅立叶级数逼近已知的连续周期函数 DFF 离散周期数据点的傅立叶逼近 SmartBJ 用自适应分段线性法逼近已知函数 SmartBJ 用自适应样条逼近(第一类)已知函数 multifit 离散试验数据点的多项式曲线拟合 LZXEC 离散试验数据点的线性最小乘拟合 ZJZXEC 离散试验数据点的正交多项式最小乘拟合 第6章: 矩阵特征值计算 Chapoly 通过求矩阵特征多项式的根来求其特征值 pmethod 幂法求矩阵的主特征值及主特征向量 rpmethod 瑞利商加速幂法求对称矩阵的主特征值及主特征向量 spmethod 收缩法求矩阵全部特征值 ipmethod 收缩法求矩阵全部特征值 dimethod 位移逆幂法求矩阵离某个常数最近的特征值及其对应的特征向量 qrtz QR基本算法求矩阵全部特征值 hessqrtz 海森伯格QR算法求矩阵全部特征值 rqrtz 瑞利商位移QR算法求矩阵全部特征值 第7章: 数值微分 MidPoint 点公式求取导数 ThreePoint 三点法求函数的导数 FivePoint 五点法求函数的导数 DiffBSample 三次样条法求函数的导数 SmartDF 自适应法求函数的导数 CISimpson 辛普森数值微分法法求函数的导数 Richason 理查森外推算法求函数的导数 ThreePoint2 三点法求函数阶导数 FourPoint2 四点法求函数阶导数 FivePoint2 五点法求函数阶导数 Diff2BSample 三次样条法求函数阶导数 第8章: 数值积分 CombineTraprl 复合梯形公式求积分 IntSimpson 用辛普森系列公式求积分 NewtonCotes 用牛顿-科茨系列公式求积分 IntGauss 用高斯公式求积分 IntGaussLada 用高斯拉道公式求积分 IntGaussLobato 用高斯—洛巴托公式求积分 IntSample 用三次样条插值求积分 IntPWC 用抛物插值求积分 IntGaussLager 用高斯-拉盖尔公式求积分 IntGaussHermite 用高斯-埃尔米特公式求积分 IntQBXF1 求第一类切比雪夫积分 IntQBXF2 求第类切比雪夫积分 DblTraprl 用梯形公式求重积分 DblSimpson 用辛普森公式求重积分 IntDBGauss 用高斯公式求重积分 第9章: 方程求根 BenvliMAX 贝努利法求按模最大实根 BenvliMIN 贝努利法求按模最小实根 HalfInterval 用分法求方程的一个根 hj 用黄金分割法求方程的一个根 StablePoint 用不动点迭代法求方程的一个根 AtkenStablePoint 用艾肯特加速的不动点迭代法求方程的一个根 StevenStablePoint 用史蒂芬森加速的不动点迭代法求方程的一个根 Secant 用一般弦截法求方程的一个根 SinleSecant 用单点弦截法求方程的一个根 DblSec
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页