求数组中最长递增子序列 动态规划+二分查找

/*
*copyright@nciaebupt 转载请注明出处
*问题:求数组中最长递增子序列
*写一个时间复杂度尽可能低的程序,求一个一维数组(N个元素)中的最长递增子序列的长度。
*例如:在序列1,-1,2,-3,4,-5,6,-7中,其最长的递增子序列为1,2,4,6,最长递增子序列
*的长度为4。
*求解思路:使用动态规划+二分查找算法 时间复杂度O(nlog(n))
*/
#include <cstdio>
#include <iostream>

using namespace std;

int LIS(int *array,int len)
{
    int *LIS = new int[len];//LIS数组中存储的是 递增子序列中最大值最小的子序列的最后一个元素(最大元素)在array中的位置
    int left,mid,right;
    int max=1;
    LIS[0]=array[0];
    for(int i = 1;i < len;++i)
    {
        left = 0;
        right = max;
        while(left <=right)
        {
            mid = (left+right)/2;
            if(LIS[mid] < array[i])
                left = mid +1;
            else
                right = mid -1;
        }
        LIS[left] = array[i];//插入
        if(left > max)
        {
            max++;
        }
    }
    delete LIS;
    return max;
}

int main(int args,char **argv)
{
    int array[] = {1,-1,2,-3,4,-5,6,-7};
    int len = sizeof(array)/sizeof(int);
    int res = LIS(array,len);
    cout<<res<<endl;
    getchar();
    return 0;
}

发布了125 篇原创文章 · 获赞 13 · 访问量 39万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览