数据结构之排序算法

排序算法

1.冒泡排序(Bubble Sort)


1)算法伪代码

for i = 1 : n
	swapped = false
	for j = n : i + 1
		if a[j] < a[j - 1]
			交换a[j]和a[j - 1]
			swapped = true
	排好序的数列:a[1...i]
	break if not swapped
end


2)算法原理过程

初始数列:5, 3, 2, 4, 1
i = 1
[
	5, 3, 2, 1, 4
	5, 3, 1, 2, 4
	5, 1, 3, 2, 4
	1, 5, 3, 2, 4
]

i = 2
[
	1, 5, 3, 2, 4
	1, 5, 2, 3, 4
	1, 2, 5, 3, 4
]

i = 3
[
	1, 2, 5, 3, 4
	1, 2, 3, 5, 4
]

i = 4
[
	1, 2, 3, 4, 5
]

3)代码实现

代码实现一:

#include <stdio.h>
#include <stdlib.h>

void bubble_sort(int arr[], int length)
{
	int i, j;
	int temp;

	for(i = 0; i < length - 1; ++i)
	{
		for(j = length - 1; j > i; --j)
		{
			if(arr[j] < arr[j - 1])
			{
				temp = arr[j - 1];
				arr[j - 1] = arr[j];
				arr[j] = temp;
			}
		}
	}
}

void print_array(int arr[], int length)
{
	int i = 0;

	for(i = 0; i < length; ++i)
	{
		printf("%d ", arr[i]);
	}
	printf("\n\n");
}

int main(void)
{
	int arr[] = {4, 3, 6, 1, 7, 2, 10, 5, 8, 9};
	int length = 10;

	printf("Before sorting, the array is:");
	print_array(arr, length);

	printf("After Bubble Sorting, the ordered array is:");
	bubble_sort(arr, length);
	print_array(arr, length);

	return 0;
}


对于上述代码可以进行如下优化(swapped变量的作用是:当初始要排序的数列已经是有序的时候,只遍历一遍数列,就退出遍历循环

#include <stdio.h>
#include <stdlib.h>

void bubble_sort(int arr[], int length)
{
	int i, j;
	int temp;

	int swapped = 1;

	for(i = 0; swapped && i < length - 1; ++i)
	{
		swapped = 0;
		for(j = length - 1; j > i; --j)
		{
			if(arr[j] < arr[j - 1])
			{
				temp = arr[j - 1];
				arr[j - 1] = arr[j];
				arr[j] = temp;
				swapped = 1;
			}
		}
	}
}

void print_array(int arr[], int length)
{
	int i = 0;

	for(i = 0; i < length; ++i)
	{
		printf("%d ", arr[i]);
	}
	printf("\n\n");
}

int main(void)
{
	int arr[] = {4, 3, 6, 1, 7, 2, 10, 5, 8, 9};
	int length = 10;

	printf("Before sorting, the array is:");
	print_array(arr, length);

	printf("After Bubble Sorting, the ordered array is:");
	bubble_sort(arr, length);
	print_array(arr, length);

	return 0;
}

4)复杂度分析

稳定的
空间复杂度O(1)
时间复杂度:比较和交换的操作次数,O(n^2)

冒泡排序和插入排序有很多相似的地方。但是比插入排序有稍多的开销。

2.插入排序(Insert Sort)


 1)伪代码实现

for i = 2 : n
    for(k = i; k > 1 and a[k] < a[k - 1]; k--)
        swap a[k, k-1]
    ->排好序的前i个元素:a[1...i]
end

2)算法原理过程

初始无序元素:5, 3, 4, 9, 7, 2, 1, 6, 8

k = 2
   3, 5, 4, 9, 7, 2, 1, 6, 8

k = 3
   3, 4, 5, 9, 7, 2, 1, 6, 8

k = 4
   3, 4, 5, 9, 7, 2, 1, 6, 8

k = 5
   3, 4, 5, 7, 9, 2, 1, 6, 8

k = 6
   3, 4, 5, 7, 2, 9, 1, 6, 8
   3, 4, 5, 2, 7, 9, 1, 6, 8
   3, 4, 2, 5, 7, 9, 1, 6, 8
   3, 2, 4, 5, 7, 9, 1, 6, 8
   2, 3, 4, 5, 7, 9, 1, 6, 8

k = 7
   2, 3, 4, 5, 7, 1, 9, 6, 8
   2, 3, 4, 5, 1, 7, 9, 6, 8
   2, 3, 4, 1, 5, 7, 9, 6, 8
   2, 3, 1, 4, 5, 7, 9, 6, 8
   2, 1, 3, 4, 5, 7, 9, 6, 8
   1, 2, 3, 4, 5, 7, 9, 6, 8

k = 8
   1, 2, 3, 4, 5, 7, 6, 9, 8
   1, 2, 3, 4, 5, 6, 7, 9, 8

k = 9
   1, 2, 3, 4, 5, 6, 7, 8, 9

 

 

3)代码实现

#include <stdio.h>

void insert_sort(int arr[], int length)
{
	int i, j;
	int temp;

	for(i = 1; i < length; ++i)
		for(j = i; j > 0 && arr[j] < arr[j - 1]; --j)
		{
			temp = arr[j - 1];
			arr[j - 1] = arr[j];
			arr[j] = temp;
		}
}

void print_array(int arr[], int length)
{
	int i;
	for(i = 0;  i < length; ++i)
	{
		printf("%d ", arr[i]);
	}
	printf("\n\n");
}

int main(void)
{
	int arr[] = {4, 3, 6, 1, 7, 2, 10, 5, 8, 9};
	int length = 10;

	printf("Before sorting, the array is:");
	print_array(arr, length);

	printf("After Insert Sorting, the ordered array is:");
	insert_sort(arr, length);
	print_array(arr, length);

	return 0;
}

4)算法复杂度分析

时间复杂度:
最好情况为O(n):即序列已经是升序排列,只需要进行比较操作n-1即可
最坏情况为O(n^2):即序列原来是降序排列,在进行升序排序时,需要n(n-1)/2次的比较,赋值操作是比较操作的次数加上(n-1)次,平均来说插入排序算法的时间复杂度为O(n^2)

空间复杂度:
额外空间O(1)

 

 该算法是排序算法中非常基础的算法,在最坏情况下,算法复杂度为O(n^2),
当数据量比较小,或已接近排好序的情况,该算法是个比较好的选择

3 选择排序(Select Sort)


1)伪代码

for i = 1 : n
      k = i
      for  j = i + 1 : n, 
             if a[j] < a[k]
                  k = j
       ->a[k]是a[i...n]中最小的元素
       交换a[i], a[k]
      -> 排好序的元素:a[1...i]
end

2)算法原理过程

初始无序数列:5, 2, 3, 1, 4
i = 1
[
    k = 1
    j = 2
   因为 a[j] < a[k]
   所以 k = j

 

   k = 2
   j = 3
   因为 a[j] > a[k]
   所以 k不变

 

   k = 2
   j = 4
   因为 a[j] < a[k]
   所以 k = j

 

   k = 4
   j = 5
   因为 a[j] > a[k]
   所以k不变
]
a[i]与 a[k]交换
最后结果为:1, 2, 3, 5, 4

i =  2
[
   过程和上面类似
]

3)代码实现 

#include <stdio.h>
#include <stdlib.h>

void select_sort(int arr[], int length)
{
	int i, j, k;
	int temp;

	for(i = 0; i < length - 1; ++i)
	{
		k = i;
		for(j = i + 1; j < length; ++j)
		{
			if(arr[j] < arr[k])
				k = j;
		}
		temp = arr[i];
		arr[i] = arr[k];
		arr[k] = temp;
	}
}

void print_array(int arr[], int length)
{
	int i;
	for(i = 0;  i < length; ++i)
	{
		printf("%d ", arr[i]);
	}
	printf("\n\n");
}

int main(void)
{
	int arr[] = {4, 3, 6, 1, 7, 2, 10, 5, 8, 9};
	int length = 10;

	printf("Before sorting, the array is:");
	print_array(arr, length);

	printf("After Insert Sorting, the ordered array is:");
	select_sort(arr, length);
	print_array(arr, length);

	return 0;
}

4)算法复杂度分析

非稳定的,
空间复杂度:O(1)
时间复杂度:比较的次数,O(n^2);交换的次数O(n)


选择排序算法的优点是交换的次数是最小的,因此对于交换的操作复杂度非常高的情况下,可以选择使用选择排序算法。

 4 快速排序(Quick Sort)


1)算法原理

初始数列:A[0],A[1],......,A[N-1]

首先任意选取一个数据(通常选用第一个数据)作为关键数据(key)
然后将所有比它小的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一趟快速排序


值得注意的是,快速排序
不是一种稳定的排序算法,也就是说,多个相同的值的相对位置也许会在算法结束时产生变动。   
1)设置两个变量I、J,排序开始的时候:I=0,J=N-1;   
2)以第一个数组元素作为关键数据,赋值给key,即 key=A[0];   
3)从J开始向前搜索,即由后开始向前搜索(J=J-1即J--),找到第一个小于key的值A[j],A[j]与A[i]交换;   
4)从I开始向后搜索,即由前开始向后搜索(I=I+1即I++),找到第一个大于key的A[i],A[i]与A[j]交换;   
5)重复第3、4、5步,直到 I=J; (3,4步是在程序中没找到时候j=j-1,i=i+1,直至找到为止。找到并交换的时候i, j指针位置不变。
另外当i=j这过程一定正好是i+或j-完成的最后令循环结束。

一趟快速排序的算法是:   

2)算法实现过程

待排序的数组A的值分别是:49 38 65 97 76 13 27 


(初始关键数据:key=49) 注意关键key永远不变,永远是和key进行比较,无论在什么位置,最后的目的就是把key放在中间,小的放前面大的放后面。  
 A[0] A[1] A[2] A[3] A[4] A[5] A[6] 
  49   38   65    97   76   13   27 
 进行第一次交换后:27 38 65 97 76 13 27   ( 按照算法的第三步从后面开始找,此时:J=6,A[i] = A[j])   

  进行第二次交换后:27 38 65 97 76 13 65   ( 按照算法的第四步从前面开始找>key的值,65>49,两者交换,此时:I=2 ,A[j] = A[i])   

  进行第三次交换后:27 38 13 97 76 13 65   ( 按照算法的第五步将又一次执行算法的第三步从后开始找,此时:J=5,A[i] = A[j])   

  进行第四次交换后:27 38 13 97 76 97 65   ( 按照算法的第四步从前面开始找大于key的值,97>49,两者交换,此时:I=3,J=5, A[j] = A[i] )   
  此时再执行第三步的时候就发现I=J=4,从而结束一趟快速排序,然后把A[i] = key后:27 38 13 49 76 97 65
  那么经过一趟快速排序之后的结果是:27 38 13 49 76 97 65,即所有大于key=49的数全部在49的后面,所有小于key=49的数全部在49的前面。

3)代码实现

#include <stdio.h>
#include <stdlib.h>

int partition(int arr[], int low, int high)
{
    int key = arr[low];

    while(low < high)
    {
        while(low < high && arr[high] >= key)
        {
            high--;
        }
        arr[low] = arr[high];

        while(low < high && arr[low] <= key)
        {
            low++;
        }
        arr[high] = arr[low];
    }

    arr[low] = key;
    return low;
}

void __quick_sort(int arr[], int low, int high)
{
    int mid = partition(arr, low, high);

    if(mid - 1 > low)
    {
        __quick_sort(arr, low, mid - 1);
    }
    if(mid + 1 < high)
    {
        __quick_sort(arr, mid + 1, high);
    }
}

void quick_sort(int arr[], int length)
{
    __quick_sort(arr, 0, length - 1);
}

void print_array(int arr[], int length)
{
	int i;

	for(i = 0; i < length; i++)
	{
		printf("%d ", arr[i]);
	}
	printf("\n\n");
}

int main()
{
	int arr[] = {49 ,38, 65, 97, 76, 13, 27};
	int length = 7;

	printf("Before sorting, the array is:");
	print_array(arr, length);

	printf("After Quick Sorting, the ordered array is:");
	quick_sort(arr, length);
	print_array(arr, length);

	return 0;
}

4)算法复杂度分析

非稳定的算法

空间复杂度:O(lg(n))

时间复杂度:O(n.lg(n))


归并排序(Merge Sort)


1)算法原理

归并排序就是将两个(或者两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的,

然后再把有序的子序列合并为整体有序序列。

初始数列为:A[0],A[1],...,A[n-1]
算法实现的步骤如下:
1) 把0~n-1的数组分为左数组A[0,...,n/2]和右数组A[n/2 + 1,..., n-1];
2) 对左数组和右数组进行迭代排序
3) 将排好序的左数组和右数组进行合并,那么最后的整个数组就是有序的数组序列。

2)算法实现过程

算法实现过程示意图如下:


3)代码实现

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void merge(int arr[], int low, int mid, int high)
{
	int length = high - low + 1;

	int *pData = NULL;
	int left = low;
	int right = mid + 1;

	int all = 0;

	//分配空间给pData;
	pData = (int*)malloc(sizeof(int) * length);
//	assert(NULL != pData);
	memset(pData, 0, length);

	//把排好序的左数组和右数组合并后放入pData中;
	while(left <= mid && right <= high)
	{
		if(arr[left] <= arr[right])
		{
			pData[all] = arr[left];
			left++;
			all++;
		}
		else
		{
			pData[all] = arr[right];
			right++;
			all++;
		}
	}

	//移动剩下的数据
	if(left <= mid)
	{
		memmove(&pData[all], &arr[left], sizeof(int) * (mid - left + 1));
	}

	if(right <= high)
	{
		memmove(&pData[all], &arr[right], sizeof(int) * (high - right + 1));
	}

	//把排好序的数列移动到原始数组中
	memmove(&arr[low], pData, sizeof(int) * (high - low + 1));

	free(pData);
}


void __merge_sort(int arr[], int low, int high)
{
	int mid = 0;

	if(low < high)
	{
		mid = low + (high -low) / 2;
		__merge_sort(arr, low, mid);
		__merge_sort(arr, mid + 1, high);
		merge(arr, low, mid, high);
	}
}

void merge_sort(int arr[], int length)
{
	__merge_sort(arr, 0, length - 1);
}

void print_array(int arr[], int length)
{
    int i;

    for(i = 0; i < length; i++)
    {
        printf("%d ", arr[i]);
    }
	printf("\n\n");
}

int main(void)
{
	int arr[] = {49 ,38, 65, 97, 76, 13, 27};
	int length = 7;

	printf("Before sorting, the array is:");
	print_array(arr, length);

	printf("After Merge Sorting, the ordered array is:");
	merge_sort(arr, length);
	print_array(arr, length);

	return 0;
}

4)算法复杂度分析

归并排序算法可选择用于各种场合,

稳定的排序。即相等的元素的顺序不会改变


时间复杂度为O(nlogn) 这是该算法中最好、最坏和平均的时间性能。   

空间复杂度为 O(n) 。
比较操作的次数介于(nlogn) / 2和nlogn - n + 1。  
赋值操作的次数是(2nlogn)

归并排序比较占用内存,但却效率高且稳定的算法。

引自http://baike.baidu.com/view/19000.htm


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值